\(\left|x-1\right|+\left|x-2\right|+\left|y-3\right|+\left|x-4\right|=3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có (x+1)(x+3)=(x+8)(x-9)=y

<=> \(\frac{x+1}{x-9}\)\(\frac{x+8}{x+3}\)

<=> \(\frac{x-9+10}{x-9}\) = \(\frac{x+3+5}{x+3}\)

<=>\(\frac{10}{x-9}\)  =  \(\frac{10}{2x+6}\)

<=> x-9=2x+6

<=> 3x=15

<=> x=5

lúc đó 6.8.13.(-4)=ymà y2\(\ge\)0

VẬy không có giá trị nào thỏa mãn x,y

29 tháng 5 2018

Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)

\("="\Leftrightarrow\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................

21 tháng 7 2018

vì x + 2 = y + 1 = z + 3 => x = y - 1 = z + 1 ; y = x + 1 = z + 2; z = x + 1 = y - 2  và z < x < y

ta có (x-1/3).(y-1/2).(z-5)=0 => ta có 3 TH

TH1 z - 5 = 0 => z = 5 ; y = 7 ; x = 4

TH2 x - 1/3 = 0 => x = 1/3 ; y = 4/3 ; z = -2/3

TH3 y - 1/2 = 0 => y = 1/2 ; x = -1/2 ; z = -3/2

nhớ cho mik nha 

21 tháng 7 2018

Ta có:

\(\left(x-\frac{1}{2}\right).\left(y-\frac{1}{2}\right).\left(z-5\right)=0\)

\(\Rightarrow x-\frac{1}{2}=0;y-\frac{1}{2}=0\)hoặc \(z-5=0\)

Với \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)\(\Rightarrow\)\(x+2=\frac{1}{3}+2=\frac{7}{3}=y+1=z+3\)\(\Rightarrow y=...;z=...\)

Với \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\)\(\Rightarrow....\)

Với \(z-5=0\)\(\Rightarrow.....\)

B tự làm nốt nhé

21 tháng 7 2019

\(\text{a) }\left(x-1\right)^2+\left|y+3\right|=0\)

Vì \(\left(x-1\right)^2\text{ và }\left|y+3\right|\text{ đều }\ge0\)

nên để \( \left(x-1\right)^2+\left|y+3\right|=0\)

thì \(\left(x-1\right)^2=0\text{ và }\left|y+3\right|=0\)

\(\Rightarrow x-1=0\text{ và }y+3=0\)

\(\Rightarrow x=1\text{ và }y=-3\)

\(\text{b) }\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

\(\text{vì }\left(x^2-9\right)^2\text{ và }\left|2-6y\right|^5\text{ đều }\ge0\)

Nên để \(\left(x^2-9\right)^2+\left|2-6y\right|^5\le0\)

Thì \(\left(x^2-9\right)^2+\left|2-6y\right|^5=0\)

hay \(\left(x^2-9\right)^2=0\text{ và }\left|2-6y\right|^5=0\)

\(\Rightarrow x^2-9=0\text{ và }2-6y=0\)

\(\Rightarrow x^2=9\text{ và }6y=2\)

\(\Rightarrow x=\pm3\text{ và }y=\frac{1}{3}\)

Câu c) làm tương tự nha