\(A=2x^2+9y^2-6xy-6x+12y+2004\) đạt GTNN

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Ta có :

\(P=2x^2+9y^2-6xy-6x-12y+2018\)

\(P=\left(x^2+9y^2+4-6xy-12y+4x\right)+x^2-10x+25+1989\)

\(P=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow MinP=1989\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

8 tháng 10 2020

A = -x2 + 2xy - 4y2 + 2x + 10y - 8

=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8

          = ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5

          = [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5

          = [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5

          = ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y

Dấu "=" xảy ra <=> x = 3 ; y = 2

=> -A ≥ -5

=> A ≤ 5

=> MaxA = 5 <=> x = 3 ; y = 2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975

= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975

= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975

= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y

Dấu "=" xảy ra <=> x = 5 ; y = 7/3

=> MinB = 1975 <=> x = 5 ; y = 7/3

8 tháng 10 2020

Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8

A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]

A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]

A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5

A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x

Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0

=>x = -1 và y = -2

Vậy MaxA = 5 khi x = -1 và y = -2

B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004

B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975

B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975

đoạn cuối tt trên

17 tháng 7 2015

GTNN đạt tại \(x=5;\text{ }y=\frac{7}{3}\).

Theo đó mà phân tích A thành tổng các bình phương sao cho dấu bằng xảy ra tai x = 5; y = 7/3.

5 tháng 12 2016

 ggia thich ro ra ban

6 tháng 7 2018

xin bài này , 10 phút sau làm

6 tháng 7 2018

\(A=\left(x^2-6xy+9y^2\right)+4\left(x-3y\right)+4+\left(x^2-10x+25\right)+1975\)

\(A=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+1975\)

\(A=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)

GTNN LÀ 1975 tại x=5    và y=7/3

9 tháng 8 2016

a) \(A=2x^2+9y^2-6xy-6x-12y+2014\)

\(=\left(2x^2-6xy-6x\right)+\left(9y^2-12y\right)+2014\)

\(=2\left[x^2-2.x.\frac{3\left(y+1\right)}{2}+\frac{9\left(y+1\right)^2}{4}\right]+\left[9y^2-12y-\frac{9}{2}.\left(y+1\right)^2\right]+2014\)

\(=2\left[x-\frac{3\left(y+1\right)}{2}\right]^2+\frac{1}{2}\left(3y-7\right)^2+1985\ge1985\)

Dấu "=" xảy ra khi và chỉ khi y = \(\frac{7}{3}\Rightarrow x=5\)

Vậy Min A = 1985 tại \(\left(x;y\right)=\left(5;\frac{7}{3}\right)\)

b) \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2-2xy-2x\right)-\left(4y^2-10y\right)-8\)

\(=-\left[x^2-2x\left(y+1\right)+\left(y+1\right)^2\right]-\left[4y^2-10y-\left(y+1\right)^2\right]-8\)

\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)

Dấu đẳng thức xảy ra khi và chỉ khi y = 2 => x = 3

Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)

9 tháng 8 2016

pn ơi , giải thích hộ t câu a vs, t k hiểu rõ lắm