\(\sqrt{x+y+2}=\sqrt{x}+\sqrt{y}-\sqrt{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)

\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)

\(\Leftrightarrow2x-\sqrt{x}=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)

 

4 tháng 8 2016

Đăng từng câu thôi 

16 tháng 7 2018

pt đã cho <=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)-2\left(x+y\right)-\left(x+y+2\sqrt{xy}\right)+2\sqrt{xy}+4\left(\sqrt{x}+\sqrt{y}\right)-4=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}\right)\left(x+y\right)-\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)-2\left(x+y\right)+2\sqrt{xy}-\left(\sqrt{x}+\sqrt{y}-2\right)^2=0\)

<=>\(\left(\sqrt{x}+\sqrt{y}-2\right)\left(x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2\right)=0\)

<=>\(\orbr{\begin{cases}\sqrt{x}+\sqrt{y}=2\\x+y-\sqrt{xy}-\sqrt{x}-\sqrt{y}+2=0\end{cases}}\)

th2: nhân cả hai vế với 2 ta được

\(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{x}-1\right)^2+\left(\sqrt{y}-1\right)^2+2>0\)

=>th2 vô nghiệm

do đó M=\(\sqrt{xy}\)

áp dụng bdt cô si ta có \(\sqrt{x}+\sqrt{y}>=2\sqrt{\sqrt{xy}}\)

<=>1>=\(\sqrt{\sqrt{xy}}\)(do \(\sqrt{x}+\sqrt{y}=2\))

<=>\(\sqrt{xy}< =1\)

<=>M<=1

4 tháng 7 2016

\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với : 

\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)

Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)

6 tháng 7 2016

cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).

a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF

b) tinh dien h tam giac AEF theo a va x

tim x de dien h tam giac AEF đặt GTNN

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

26 tháng 10 2016

a) \(A=\frac{x+y-2\sqrt{xy}}{x-y}\left(ĐK:xy\ge0;x\ne y\right)\)

\(=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=>đpcm

b) Có: \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

=>\(\sqrt{x}=\sqrt{2}+1\)

\(y=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)

=>\(\sqrt{y}=\left|\sqrt{2}-1\right|=\sqrt{2}-1\)

Nên: \(A=\frac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\frac{2}{2\sqrt{2}}=\frac{1}{\sqrt{2}}\)