Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do vai trò của x,y bình đẳng như nhau,giả sử \(x\ge y\),khi đó:
\(\frac{x+y}{x^2+y^2}=\frac{7}{25}\)
\(\Rightarrow7\left(x^2+y^2\right)=25\left(x+y\right)\)
\(\Rightarrow7x^2+7y^2=25x+25y\)
\(\Rightarrow7x^2-25x=25y-7y^2\)
\(\Rightarrow x\left(7x-25\right)=y\left(25-7y\right)\)
\(\Rightarrow7x-25\)và \(25-7y\)cùng dấu vì \(x,y\inℕ\)
Nếu \(\hept{\begin{cases}7x+25< 0\\25-7y< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 4\\y< 4\end{cases}}\)(trái với giả sử)
Nếu \(\hept{\begin{cases}7x-25\ge0\\25-7y\ge0\end{cases}}\)
\(\Rightarrow x\ge4,y< 4\)
Thử y là các số tự nhiên từ 0 đến 3 ta được \(x=4,y=3\)
Vậy các cặp số (x,y) cần tìm là:\(\left(3;4\right)\)và các hoán vị của chúng
\(\left(x+2\right)^2-6\left(y-1\right)^2+xy=24\Leftrightarrow x^2+4x-6y^2+12y+xy=26\)
\(\Leftrightarrow\left(x^2-2xy+4x\right)+\left(3xy-6y^2+12y\right)=26\Leftrightarrow x\left(x-2y+4\right)+3y\left(x-2x+4\right)=26\)
\(\Leftrightarrow\left(x-2y+4\right)\left(x+3y\right)=26\)
Vì x,y nguyên dương nên có các TH sau:
\(\hept{\begin{cases}x+3y=1\\x-2y+4=26\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=1\\x-2y=22\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{68}{5}\\y=\frac{-21}{5}\end{cases}\left(loai\right)}}\)
\(\hept{\begin{cases}x+3y=26\\x-2y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=26\\x-2y=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{43}{5}\\y=\frac{29}{5}\end{cases}\left(loai\right)}}\)
\(\hept{\begin{cases}x+3y=2\\x-2y+4=13\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=2\\x-2y=9\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{31}{5}\\y=\frac{-7}{5}\end{cases}\left(loai\right)}}\)
\(\hept{\begin{cases}x+3y=13\\x-2y+4=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+3y=13\\x-2y=-2\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}\left(chon\right)}}}\)
Vậy (x;y)=(4,3)
(Mình mới giải được câu a thôi, câu b thấy khó quá! Với lại nghiệm là nguyên không âm mới giải được nha bạn.)
Xét \(x=0\) thấy vô nghiệm.
Xét \(x=1\) có nghiệm \(y=0\).
Xét \(x=2\) có nghiệm \(y=1\).
Xét \(x\ge3\). Ta xét modulo 8: \(2^x=3^y+1\) mà \(3^y\) đồng dư 1 hoặc 3 (mod 8) mà thôi.
Vậy \(3^y+1\) không chia hết cho 8 còn \(2^x\) chia hết cho 8 với mọi \(x\ge3\).
Pt vô nghiệm trong trường hợp này.
Vậy ở câu a pt chỉ có các nghiệm \(\left(x;y\right)\in\left\{\left(1;0\right),\left(2;1\right)\right\}\)
Trần Quốc Đạt
Mình cũng thấy vậy
Nhưng đề thầy cho ó mỗi tìm nghiệm nguyên, chắc thầy lấy từ các bài khác nhau!
\(a)\)\(x+xy+y=-6\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)
Lập bảng xét TH ra là xong
\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
Xin thêm 1 slot đi hok về làm cho -,-
\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel )
Ta có :
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)
Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :))
Chúc bạn học tốt ~
\(y=\sqrt{x^2+2x+4}\)
\(\Leftrightarrow y^2=x^2+2x+4\)
\(\Leftrightarrow y^2=\left(x+1\right)^2+3\)
\(\Leftrightarrow\left(y-x-1\right)\left(y+x+1\right)=3\)
Đến đây bạn lập bảng ạ