Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: \(\left(\sqrt{2017}+\sqrt{2019}\right)^2=2017+2019+2\sqrt{2017.2019}\)
\(=4036+2\sqrt{\left(2018-1\right).\left(2018+1\right)}\)
\(=4036+2\sqrt{2018^2-1}< 4036+2\sqrt{2018^2}=2018.4=\left(2\sqrt{2018}\right)^2\)
Vậy x < y
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : \(x\sqrt{2017-y^2}\le\frac{x^2+2017-y^2}{2}\)
\(y\sqrt{2017-x^2}\le\frac{y^2+2017-x^2}{2}\)
Do đó \(x\sqrt{2017-y^2}+y\sqrt{2017-x^2}\le2017\)
dấu = xảy ra khi và chỉ khi :\(\hept{\begin{cases}x^2=2017-y^2\\y^2=2017-x^2\end{cases}}\)
\(\Leftrightarrow2\left(x^2+y^2\right)=2.2017\)(cộng vế với vế)
\(\Leftrightarrow x^2+y^2=2017\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,PT 1 <=> (x-y)^2+(y-z)^2+(z-x)^2=0
=>x=y=z thay vào pt 2 ta dc x=y=z=3
c, xét x=y thay vào ta dc x=y=2017 hoặc x=y=0
Xét x>y => \(\sqrt{x}+\sqrt{2017-y}>\sqrt{y}+\sqrt{2017-x}\)
=>\(\sqrt{2017}>\sqrt{2017}\)(vô lí). TT x<y => vô lí. Vậy ...
d, pT 2 <=> x^2 - xy + y^2 = 2z = 2(x + y)
\(< =>x^2-x\left(y+2\right)+y^2-2y=0\). Để pt có no thì \(\Delta>0\)
<=> \(\left(y+2\right)^2-4\left(y^2-2y\right)\ge0\)
<=> \(-3y^2+12y+4\ge0\)<=>\(3\left(y-2\right)^2\le16\)
=> \(\left(y-2\right)^2\in\left\{1,2\right\}\). Từ đó tìm dc y rồi tìm nốt x
b,\(\hept{\begin{cases}x^3=y^3+9\\3x-3x^2=6y^2+12y\end{cases}}\).Cộng theo vế ta dc \(\left(x-1\right)^3=\left(y+2\right)^3\)=>x=y+3. Từ đó tìm dc x,y
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{x}+\sqrt{y}=3\sqrt{222}\)
\(3\sqrt{222}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{222}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in Z\)
\(\Rightarrow\) \(a+b=3\)
Xét 4 TH:
- Nếu a = 0 thì b = 3
- Nếu a = 1 thì b = 2
- Nếu a = 2 thì b = 1
- Nếu a = 3 thì b = 0
Từ đó dễ dàng tìm được x, y
![](https://rs.olm.vn/images/avt/0.png?1311)
từ a+b=3 => b=3-a
mặt khác: \(a^3-b^2=-3\)
=>\(a^3-\left(3-a\right)^2+3=0\)
\(\Rightarrow a^3-9+6a-a^2+3=0\)
\(\Rightarrow a^3-a^2+6a-6=0\)
\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)
\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)
=>a=1 vì \(a^2\ge0\)
=>\(\sqrt[3]{x-2}=1\)
\(\Rightarrow x-2=1\Rightarrow x=3\)
Vậy x=3
b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\) Đk: \(x\ge-1\)
\(\sqrt{x+1}=b;b\ge0\)
ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)
đến đây dùng pp thế là đc rồi nhé!