K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HJ
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CD
0
KB
0
NV
0
A
0
TN
2
TN
19 tháng 3 2017
Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:
\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)
\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)
Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)
\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)
Suy ra \(b^2+1\inƯ\left(10\right)=....\)
Tự làm nốt nhá, trở thành bài lớp 6 r` :)
( x+y )2 = xy( xy + 1 ) ⟺ ( x+y )2 = xy( xy + 1 ).
Lại có ( | xy |, | xy+1 | ) = 1( | xy | ,| xy+1 | ) = 1 nên xét:
Nếu xy ≥ 0 xy ≥ 0 thì {xy = a2xy + 1 = b2 {xy = a2xy + 1 = b2
Với a,ba,b nguyên dương. Từ trên ta được a2 = b2 − 1 ⟺ (b−a)(b+a )= 1a2 = b2 − 1 ⟺ (b−a)(b+a) = 1 => a = 0, b = 1
a = 0, b = 1. Từ đó x = y = 0
Nếu xy ≤ −1xy ≤ −1 (Không thể −1≤ xy ≤ 0−1 ≤ xy ≤ 0 ) được.
Tương tự, đặt {xy = −m2xy + 1 = −n2{xy = −m2xy + 1 = −n2
Trong đó m,nm,n nguyên dương. Tương tự như trên tìm được m,nm,n và tìm được x,yx,y