K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2020

Vì x;y nguyên dương và (x;y)=(1;1) không thỏa mãn phương trình nên x2+y2+1 >3; xy+x+y>3

=> xy+x+y là ước nguyên dương lớn hơn 3 cả 30 gồm 5;6

Nếu xy+x+y=5

=> (x+1)(y+1)=6 ta được các trường hợp

\(\hept{\begin{cases}x+1=2\\y+1=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}\left(tmđk\right)}}\)

\(\hept{\begin{cases}x+1=3\\y+1=2\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}\left(tmđk\right)}}\)

Nếu xy+x+y=6 

<=> (x+1)(y+1)=7 (ktm)

Vậy cặp số (x;y)=(1;2);(2;1)

1 tháng 7 2015

Ta có: 2y2 + x + y + 1 = x 2 + 2y2 + xy
2y2(x - 1) – x(x - 1) – y(x - 1) + 1 = 0 (1)
-Vì x = 1 không phải là nghiệm của (1). Khi đó chia hai vế của (1) cho x – 1, ta có: (2) 
-Với x, y nguyên. Suy ra: nguyên nên x – 1 = 1 hoặc x – 1 = -1 
-Thay x = 2 và x = 0 vào (2), ta có: y = 1 hoặc y = và y Z.
Vậy phương trình đã cho có hai nghiệm nguyên là (2;1) và (0;1).

13 tháng 8 2019

Giả sử x;y⋮̸ 3

⇒x^2;y^2 chia 3 dư 1

⇒z^2=x^2+y^2 chia 3 dư 2 ( vô lý vì z^2 là số chính phương )

Vậy x⋮3y⋮3⇒xy⋮3

Chứng minh tương tự xy⋮4

(3;4)=1 => x.y chia hết cho 12

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ

3 tháng 10 2019

C1:\(y^2+2xy-11x=30\)

\(\Leftrightarrow4y^2+8xy-44x=120\)

\(\Leftrightarrow4y^2+8xy+4x^2-4x^2-44x-120=0\)

\(\Leftrightarrow4\left(y+x\right)^2-\left(2x\right)^2-2.2x.11-121+1=0\)

\(\Leftrightarrow4\left(y+x\right)^2-\left(2x+11\right)^2+1=0\)

Tự lm tiếp

C2:\(y^2-30=x\left(11-2y\right)\)

\(\Leftrightarrow x=\frac{y^2-30}{11-2y}\)

Vì \(x\in Z\Rightarrow4y^2-120⋮2y-11\)(1)

\(\Leftrightarrow4y^2-121+1⋮2y-11\)

Do \(4y^2-121=\left(2y-11\right)\left(2y+11\right)⋮\left(2y-11\right)\)

\(\Rightarrow1⋮2y+11\)

\(\Leftrightarrow2y+11\inƯ\left(1\right)=\left(\pm1\right)\)

\(\Leftrightarrow y\in\left(-5;-6\right)\)

Thay vô tìm x rồi thay x,y vào xem có tm ko, vì ở(1) nhân thêm 4 chỉ là hệ quả thôi