K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7(x+y)-2xy=5

=>7x-2xy+7y=5

=>x(-2y+7)+7y-24,5=-19,5

=>\(-2x\left(y-3,5\right)+7\left(y-3,5\right)=-19,5\)

=>\(\left(-2x+7\right)\left(y-3,5\right)=-19,5\)

=>\(\left(-2x+7\right)\left(2y-7\right)=-39\)

=>\(\left(2x-7\right)\left(2y-7\right)=39\)

=>\(\left(2x-7\right)\left(2y-7\right)=1\cdot39=39\cdot1=\left(-1\right)\cdot\left(-39\right)=\left(-39\right)\cdot\left(-1\right)=3\cdot13=13\cdot3=\left(-3\right)\cdot\left(-13\right)=\left(-13\right)\cdot\left(-3\right)\)

=>\(\left(2x-7;2y-7\right)\in\left\{\left(1;39\right);\left(39;1\right);\left(-1;-39\right);\left(-39;-1\right);\left(3;13\right);\left(13;3\right);\left(-3;-13\right);\left(-13;-3\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(4;23\right);\left(23;4\right);\left(3;-16\right);\left(-16;3\right);\left(5;10\right);\left(10;5\right);\left(2;-3\right);\left(-3;2\right)\right\}\)

29 tháng 3 2024

!!!!!

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

3 tháng 12 2021

1.  \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)

\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)

Ta lập bảng giá trị:

\(2y-1\)15-1-5
\(2x+1\)51-5-1
\(x\)20-3-1
\(y\)130-2

Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)

3 tháng 12 2021

 2xy-x+y=3

2(2xy-x+y)=2.3

4xy-2x+2y=6

2x(2y-1)-2y=6

2x(2y-1)-2y+1=6+1

2x(2y-1)-(2y-1)=7

(2x-1)(2y-1)=7

6 tháng 3 2020

a) Ta có \(P\left(x\right)=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+a\)

\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+a\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\)

Đặt \(b=x^2+8x+9\) khi đó P(x) có dạng:

\(\left(b-2\right)\left(b+6\right)+a=b^2+4b+a-12=b\left(b+4\right)+a-12\)

nên để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow a-12=0\Leftrightarrow a=12\)

25 tháng 2 2018

x2+2xy+x+y2+4y=0

x[x+2y+1]y[4+y]=0

x=0

y=0

y=-4

x=-1

y=-2

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
$x^2-2xy+5y^2=y+1$

$\Leftrightarrow x^2-2xy+y^2=y+1-4y^2$

$\Leftrightarrow y+1-4y^2=(x-y)^2\geq 0$

$\Leftrightarrow y+1-4y^2\geq 0$

$\Leftrightarrow 4y^2-y-1\leq 0$

$\Leftrightarrow 4y^2-y-3\leq -2<0$

$\Leftrightarrow (y-1)(4y+3)<0$

$\Leftrightarrow \frac{-3}{4}< y< 1$ 

$y$ nguyên nên $y=0$ 

Khi đó: $x^2=1\Leftrightarrow x=\pm 1$ 

Vậy $(x,y)=(\pm 1,0)$