
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1: xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
2: xy+x+6=0
=>x(y+1)=-6
=>(x;y+1)∈{(1;-6);(-6;1);(-1;6);(6;-1);(2;-3);(-3;2);(-2;3);(3;-2)}
=>(x;y)∈{(1;-7);(-6;0);(-1;5);(6;-2);(2;-4);(-3;1);(-2;2);(3;-3)}
3: -xy-x-y-1=0
=>xy+x+y+1=0
=>x(y+1)+(y+1)=0
=>(x+1)(y+1)=0
=>\(\begin{cases}x+1=0\\ y+1=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=-1\end{cases}\)
4: xy-x-y+1=0
=>x(y-1)-(y-1)=0
=>(x-1)(y-1)=0
=>\(\begin{cases}x-1=0\\ y-1=0\end{cases}\Rightarrow\begin{cases}x=1\\ y=1\end{cases}\)
5: xy+2x+y+11=0
=>x(y+2)+y+2+9=0
=>x(y+2)+(y+2)=-9
=>(x+1)(y+2)=-9
=>(x+1;y+2)∈{(1;-9);(-9;1);(-1;9);(9;-1);(3;-3);(-3;3)}
=>(x;y)∈{(0;-11);(-10;-1);(-2;7);(8;-3);(2;-5);(-4;1)}
6: ĐKXĐ: x<>0
\(\frac{5}{x}+\frac{y}{4}=\frac18\)
=>\(\frac{20+xy}{4x}=\frac18\)
=>\(\frac{40+2xy}{8x}=\frac{x}{8x}\)
=>40+2xy=x
=>x-2xy=40
=>x(1-2y)=40
=>x(2y-1)=-40
mà 2y-1 lẻ(do y nguyên)
nên (x;2y-1)∈{(-40;1);(40;-1);(8;-5);(-8;5)}
=>(x;2y)∈{(-40;2);(40;0);(8;-4);(-8;6)}
=>(x;y)∈{(-40;1);(40;0);(8;-2);(-8;3)}
8: (x+2)(y-3)=-3
=>(x+2;y-3)∈{(1;-3);(-3;1);(-1;3);(3;-1)}
=>(x;y)∈{(-1;0);(-5;4);(-3;6);(1;2)}

a Ta có
xy -x-y=-1
=> x(y-1)-(y-1)=0
=> (y-1)(x-1)=0
=> + y-1 =0 và x-1 thỏa mãn với mọi số nguyên
+ x-1=0 và y-1 thỏa mãn với mọi số nguyên


1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,


x+xy-\(x^2\)+y=1
<=>xy+y=\(x^2\)-x+1(*)
.Nếu x+1=0=>x=-1=>0.y=3->vô lí
Nếu x+1\(\ne\)0=>y=\(\frac{x^2-x+1}{x+1}=\frac{x^2+x-2x+1}{x+1}=\frac{x^2+x}{x+1}+\frac{-2x+1}{x+1}\)=\(\frac{x\left(x+1\right)}{x+1}+\frac{-2x+1}{x+1}\)
=x+\(\frac{-2x-2+3}{x+1}=x+\frac{-2\left(x+1\right)}{x+1}+\frac{3}{x+1}=x-2+\frac{3}{x+1}\in Z\)<=>\(\frac{3}{x+1}\in Z\Leftrightarrow x+1\inƯ\left(3\right)\)
phần này tự làm vì nó dễ
học tốt!

Ta có: \(x+xy-x^2+y=1\Leftrightarrow xy+y=x^2+1-x\)
\(\Leftrightarrow y\left(x+1\right)=x^2-x+1\)
Với \(x=-1\Rightarrow x^2-x+1=0\) (vô lý vì \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Với \(x\ne-1\Rightarrow y=\frac{x^2-x+1}{x+1}\)
Do \(y=\frac{x^2+x-2\left(x+1\right)+3}{x+1}=x-2+\frac{3}{x+1}\in Z\)
\(\Rightarrow\frac{3}{x+1}\in Z\)ta có bảng sau:
x+1 | 1 | -1 | 3 | -3 |
x | 0 | -2 | 2 | -4 |
y | 1 | -7 | 1 | -7 |
các bạn vào đây : http://olm.vn/hoi-dap/question/176053.html