\(x^5+1=3.101^y\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
30 tháng 5 2021

Ta có: \(101\equiv1\left(mod4\right)\Leftrightarrow101^y\equiv1\left(mod4\right)\Leftrightarrow3.101^y\equiv3\left(mod4\right)\).

Với \(x\equiv0\left(mod2\right)\)thì \(x^5\equiv0\left(mod4\right)\Leftrightarrow x^5+1\equiv1\left(mod4\right)\).

\(x\equiv1\left(mod4\right)\Leftrightarrow x^5\equiv1\left(mod4\right)\Leftrightarrow x^5+1\equiv2\left(mod4\right)\)

\(x\equiv3\left(mod4\right)\Leftrightarrow x^5\equiv3^5\equiv3\left(mod4\right)\Leftrightarrow x^5+1\equiv0\left(mod4\right)\)

Ta thấy hai vế không cùng đồng dư với \(4\)do đó phương trình vô nghiệm. 

30 tháng 9 2016

Ta có y2 = 1 - x2

=> 1 - x2 \(\ge0\)

<=> \(-1\le x\le1\)

Kết hợp với điều kiện ban đầu ta được

\(0\le x\le1\)

P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)

Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)

Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)

\(x^2+y^2+z^2+2xyz=1\)

\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)

\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)

          \(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)

\(\Rightarrow P\ge\frac{1}{2}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)