K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NB
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
30 tháng 9 2016
Ta có y2 = 1 - x2
=> 1 - x2 \(\ge0\)
<=> \(-1\le x\le1\)
Kết hợp với điều kiện ban đầu ta được
\(0\le x\le1\)
P = \(\sqrt{1+2x}+\sqrt{1+2\sqrt{1-x^2}}\)
Hàm số này bị chặn 2 đầu nên ta xét x = 0 và x = 1 thì P = 1 + \(\sqrt{3}\)
Vậy GTNN là 1 + \(\sqrt{3}\)khi x = (0;1)
TT
tìm Max và Min của P=\(x\sqrt{1+y}+y\sqrt{1+x}\) trong đó x, y là cá số thực không âm thỏa mãn x+y=1
0
4 tháng 10 2019
\(x^2+y^2+z^2+2xyz=1\)
\(\Leftrightarrow2xyz=1-x^2-y^2-z^2\)
\(\Rightarrow P=xy+yz+xz-2xyz=xy+yz+xz+x^2+y^2+z^2-1\)
\(\Rightarrow2P=\left(x+y\right)^2+\left(y+z\right)^2+\left(z+x\right)^2-2\ge1\)
\(\Rightarrow P\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)
Ta có: \(101\equiv1\left(mod4\right)\Leftrightarrow101^y\equiv1\left(mod4\right)\Leftrightarrow3.101^y\equiv3\left(mod4\right)\).
Với \(x\equiv0\left(mod2\right)\)thì \(x^5\equiv0\left(mod4\right)\Leftrightarrow x^5+1\equiv1\left(mod4\right)\).
\(x\equiv1\left(mod4\right)\Leftrightarrow x^5\equiv1\left(mod4\right)\Leftrightarrow x^5+1\equiv2\left(mod4\right)\)
\(x\equiv3\left(mod4\right)\Leftrightarrow x^5\equiv3^5\equiv3\left(mod4\right)\Leftrightarrow x^5+1\equiv0\left(mod4\right)\)
Ta thấy hai vế không cùng đồng dư với \(4\)do đó phương trình vô nghiệm.