
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



voi x,y,z>0 ta co
ap dung bdt co si ta co
\(T>=3\sqrt[3]{\sqrt{\left(\frac{x^2+1}{x^2}+\frac{1}{y^2}\right)\left(\frac{y^2+1}{y^2}+\frac{1}{z^2}\right)\left(\frac{z^2+1}{z^2}+\frac{1}{x^2}\right)}}\)
=\(3\sqrt[3]{\sqrt{\left(1+\frac{1}{x^2}+\frac{1}{y^2}\right)\left(1+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1+\frac{1}{z^2}+\frac{1}{x^2}\right)}}\)
>=\(3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{1}{x^2y^2}}.3\sqrt[3]{\frac{1}{y^2z^2}}.3\sqrt[3]{\frac{1}{x^2z^2}}}}=3\sqrt[3]{\sqrt{27\sqrt[3]{\frac{1}{\left(xyz\right)^4}}}}\)
=\(3\sqrt[3]{\sqrt{27.\frac{1}{xyz}.\sqrt[3]{\frac{1}{xyz}}}}=3\sqrt{3}.\sqrt[9]{\frac{1}{\left(xyz\right)^2}}\)
ap dung bdt co si ta co
\(x+y+z>=3\sqrt[3]{xyz}\)
<=>3>=\(3\sqrt[3]{xyz}\left(dox+y+z=3\right)\)
<=>xyz<=1
<=>1/xyz>=1
<=>\(\sqrt[9]{\frac{1}{\left(xyz\right)^2}}>=1\)
do do T>=\(3\sqrt{3}\)
dau = xay ra <=>x=y=z=1

vì \(x^2+y^2+z^2=1\)
\(\Rightarrow0\le x;y;z\le1\)
\(2P=2\left(xy+xz+yz\right)+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2-2\left(x^2+y^2+z^2\right)-2\)
\(2P-2=-\left(x-y\right)^2-\left(x-z\right)^2-\left(y-z\right)^2+x^2\left(y-z\right)^2+y^2\left(x-z\right)^2+z^2\left(x-y\right)^2\)
\(2P-2=\left(x^2-1\right)\left(y-z\right)^2+\left(y^2-1\right)\left(x-z\right)^2+\left(z^2-1\right)\left(x-y\right)^2\le0\)
\(2P-2\le0\)
\(2P\le2\)
\(P\le1\)
GTLN P là 1 khi x=y=z=\(\frac{\sqrt{3}}{3}\)
tth_new_dep_trai_lai_lang_solo_SOS_Ji_Chen_tuoi_tom nhờ mình đăng hộ nha!

1) \(E^2=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+y^2\right)-4xy}{2\left(x^2+y^2\right)+4xy}=\frac{5xy-4xy}{5xy+4xy}=\frac{xy}{9xy}=\frac{1}{9}\)
\(\Rightarrow E=\frac{1}{3}\)(vì x>y>0)
2) Ta có \(x+y+z=0\Rightarrow x+y=1-z\)
Lại có : \(1=\left(x+y+z\right)^2=1+2\left(xy+yz+xz\right)\Rightarrow2xy+2yz+2xz=0\Rightarrow2xy=-2z\left(x+y\right)=-2z\left(1-z\right)\)Thay vào \(x^2+y^2+z^2=1\) được :
\(\left(x+y\right)^2-2xy+z^2=1\)\(\Leftrightarrow\left(1-z\right)^2-2z\left(1-z\right)+z^2=1\Leftrightarrow4z^2-4z=0\Leftrightarrow z\left(z-1\right)=0\Leftrightarrow\orbr{\begin{cases}z=0\\z=1\end{cases}}\)
Với z = 0 => x + y = 1 và x2+y2 = 1 => x = 0 , y = 1 hoặc x = 1 , y =0
=> A = 1
Tương tự với z = 1 , ta cũng có x = 0 , y = 0 => A = 1

Cộng vế theo vế
=> \(x^2+x+y^2+y+z^2+z=x^2+y^2+z^2\)
=> \(x+y+z=0\)=> A = 0
\(x=\left(y^2-x^2\right)=\left(y-x\right)\left(y+x\right)=\left(y-x\right).\left(-z\right)=\left(x-y\right).z\)
\(y=\left(z-y\right)\left(z+y\right)=\left(z-y\right).-x=x\left(y-z\right)\)
\(z=y\left(z-x\right)\)
=> \(xyz=\left(x-y\right)\left(y-z\right)\left(z-x\right).xyz\)
=> B = 1

\(\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}_{ }+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge.\)
\(\sqrt{\left(x+y+1\right)^2+\left(\sqrt{3}\right)^2}+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge\sqrt{\left(x+y+z-1\right)^2+12}=4.\)
Sử dụng Minkowski,
\(\left(y+2\right)x^2+1=y^2\)
\(\left(y+2\right)x^2-3=\left(y-2\right)\left(y+2\right)\)
\(\left(y+2\right)\left(x^2-y+2\right)=3\)
vì x,y e Z nên y+2 và x2-y+2 đều thuộc Z
nên chúng là ước của 3
còn lại tự bấm máy