Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì \(\left(x-y\right)^2\ge0;\left(2x+3y-10\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+\left(2x+3y-10\right)^2\ge0\)
\(\Rightarrow A=\left(x-y\right)^2+\left(2x+3y-10\right)^2-2\ge-2\) có gtnn là - 2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(2x+3y-10\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-y=0\\2x+3y=10\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vật GTNN của A là - 2 <=> x = y = 2
\(\hept{\begin{cases}x-y=0\\2x+3y-10=0\end{cases}\Rightarrow\hept{\begin{cases}x=y\\6y=10\end{cases}\Rightarrow}x=y=\frac{10}{6}=\frac{5}{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : | 1/2 - x | >= 0 với mọi x
=> 0,6 + | 1/2 - x | >= 0,6 với mọi x
Dấu " = " xảy ra <=> 1/2 - x = 0 => x = 1/2
Vậy,_
b) Ta có : | 2y + 2/3 | >= với mọi x
=> 2/3 - | 2y + 2/3 | < 2/3 với mọi x
Dấu " = " xảy ra <=> 2y + 2/3 = 0 => y = -1/3
Vậy,_
a, Do \(|\frac{1}{2}-x|\)\(\ge\)\(0\)với mọi x \(\Rightarrow\)\(A\ge0,6\)
Dấu bằng xảy ra \(\Leftrightarrow\) \(|\frac{1}{2}-x|=0\Leftrightarrow\frac{1}{2}-x=0\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN \(A=0,6\Leftrightarrow x=\frac{1}{2}\)
b, Do \(|2y+\frac{2}{3}|\ge0\)với mọi y \(\Rightarrow\) \(B\le\frac{2}{3}\)
Dấu bằng xảy ra \(\Leftrightarrow\)\(|2y+\frac{2}{3}|=0\Leftrightarrow2y+\frac{2}{3}=0\Leftrightarrow2y=\frac{-2}{3}\Leftrightarrow y=\frac{-1}{3}\)
Vậy GTLN \(B=\frac{2}{3}\)\(\Leftrightarrow y=\frac{-1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(M=\left(2x-1\right)\left(2y-1\right)=4xy-2x-2y+1=4\left(xy\right)-2\left(x+y\right)+1\)
\(M=4.16-2.10+1=45\)
b) Ta có:
\(\hept{\begin{cases}\left(x+2\right)^{2010}\ge0\\|y-\frac{1}{5}|\ge0\end{cases}}\left(\forall x,y\in R\right)\)
Khi đó \(N=\left(x+2\right)^{2010}+|y-\frac{1}{5}|-10\ge-10\)
Dấu "=" xảy ra khi x + 2 = 0 và y - 1/5 = 0
Suy ra x = -2 và y = 1/5
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì (x - y)2 ≥ 0 ; (2x + 3y - 10)2 ≥ 0
=> A = (x - y)2 + (2x + 3y - 10)2 ≥ 0
=> A = (x - y)2 + (2x + 3y - 10)2 - 2 ≥ - 2
Dấu "=" xảy ra khi x - y = 0 hoặc 2x + 3y = 10 <=> x = y = 2
Vậy Amin là - 2 tại x = y = 2
Ta thấy: \(\left\{\begin{matrix}\left(x-y\right)^2\ge0\\\left(2x+3y-10\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow A=\left(x-y\right)^2+\left(2x+3y-10\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}\left(x-y\right)^2=0\\\left(2x+3y-10\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x-y=0\\2x+3y-10=0\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=y\\2x+3y-10=0\end{matrix}\right.\)\(\Rightarrow2x+3x-10=0\)\(\Rightarrow5x=10\Rightarrow x=2\Rightarrow y=2\)
Vậy \(x=y=2\) để A đạt giá trị nhỏ nhất