Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)2018=\left|x-2016\right|+\left|x-2014\right|\)
\(\Rightarrow\hept{\begin{cases}x-2016+x-2014=2018\\x-2016+x-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x-2016-2014=2018\\2x-2016-2014=-2018\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=2018+2016+2014\\2x=-2018+2016+2014\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2x=6048\\2x=2012\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3024\\x=1006\end{cases}}\)
vậy x = 3024 hoặc x = 1006
b) \(\left(x-3\right)^x-\left(x-3\right)^{x+2}=0\)
\(\Rightarrow\left(x-3\right)^x-\left(x-3\right)^x\left(x-3\right)^2=0\)
\(\Rightarrow\left(x-3\right)^x\left[1-\left(x-3\right)^2\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-3\right)^x=0\\1-\left(x-3\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-3=0\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\\left(x-3\right)^2=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x-3=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=4\end{cases}}\)
vậy x = 3 hoặc x = 4
2, <=> \(\left|2x-6\right|+\left|2x+5\right|=11\)
<=> \(\left|6-2x\right|+\left|2x+5\right|=11\)
Ta có : \(\left|6-2x\right|+\left|2x+5\right|\ge\left|6-2x+2x-5\right|=\left|11\right|=11\)
Dấu = xảy ra khi : \(\left(6-2x\right)\left(2x+5\right)\ge0\)
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-\frac{5}{2}\le x\le3\).
Bài 1 :
\(a)\) Ta có :
\(2^{31}+8^{10}+16^8=2^{31}+2^{30}+2^{32}=2^{30}\left(2+1+4\right)=2^{30}.7\) chia hết cho 7
Vậy \(2^{31}+8^{10}+16^8⋮7\)
B2:
a)3x+2=4
3x=4-2
3x=2
x=2/3
b)3(x-1)-5=-20
3(x-1)=-20+5
x-1=-15/3
x-1=-5
x=-5+1
x=-4
c)(x-1)(x+2)=0
nên x-1=0 hoặc x+2=0
x=0+1 x=0-2
x=1 x=-2
d)(x+1)(2x-5)=0
nên x+1=0 hoặc 2x-5=0
x=0-1 2x=0+5
x=1 x=5/2
còn b1 thì cậu đăng câu khác đi, t lười làm
bài 1: a) 1+(-2)+3+(-4)+5+(-6)+....+2015+(-2016)
=[1+(-2)]+[3+(-4)]+[5+(-6)]+....+[2015+(-2016)]
=(-1)+(-1)+(-1)+...+(-1) (có 1008 số -1)
=(-1).1008
=-1008
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
b, |5x-3| >= 7
=> 5x-3 < = -7 hoặc 5x-3 >= 7
=> x < = -4/5 hoặc x >= 2
Vậy ..........
Tk mk nha
Ta có \(|x-y+3|\ge0\forall x,y\)
\(2015\left(2y-3\right)^{2016}\ge0\forall y\)
\(\Rightarrow\hept{\begin{cases}|x-y+3|\ge0\\2015.\left(2y-3\right)^{2016}\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\\left(2y-3\right)^{2016}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-y+3=0\\y=\frac{3}{2}\end{cases}}\)
Bạn thay vào tìm x
Mik cũng hok Toán 2