Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 2 )2012 + | y2 - 9 |2014 = 0 ( 1 )
vì ( x - 2 )2012 \(\ge\)0 ; | y2 - 9 |2014 \(\ge\)0 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy x = 2 ; y = 3
còn lại tương tự
Vì (x -2 )2012> hoặc =0 mà |y2 -9 |2014 > hoặc =0 nên để (x -2 )2012 + | y2 -9 |2014 =0 thì (x-2)2012 =0 và |y2 -9| =0
=>( x-2)=0 và y2-9=0
=>x=0 và y2=9
=>x=o và y=3 hoặc x= -3
Vì \(\left(x-2\right)^{2012}\ge0\forall x\\ \left|y^2-9\right|^{2014}\ge0\forall y\)
Nên (x-2)^2012+∣y^2−9∣^2014=0
\(\Leftrightarrow\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x-2=0\\y^2-9=0\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2\\y^2=9\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2\\y=\pm3\end{cases}\)
ta có \(\hept{\begin{cases}\left(2x-1\right)^{2012}\ge0\\\left(3y+2\right)^2\ge0\end{cases}}\)
+ hết vào ta có VT>=0
từ bpt => VT=0 <=> x = 1/2 và y=-2/3
bạn MAi thị diệu linh ơi, cho mik hỏi bài mik làm sai chỗ nào vậy bạn
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
\(\left(x-2\right)^{2012}\ge0;\left|y^2-9\right|^{2014}\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\Rightarrow y^2=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Ta có (x-2)2012 >= 0 với mọi x
Iy2-9I2014 >=0 với mọi y
Mà (x-2)2012+Iy2-9I2014=0
=> (x-2)2012=0 và Iy2-9I2014=0
<=> x-2=0 và y2-9=0
<=> x=2 và y={-3;3}
Vì (x-2)2012 ≥ 0
/y2 -9/2014 ≥ 0\
=> (x-2)2012 +/y2 -9/2014 = 0
=> (x-2)2012 = 0
/y2 - 9/ 2014 = 0
=> x-2 = 0
y2 -9 = 0
=> x = 0
y2 = 9
=> x = 0
y = 3 ; -3
Vì \(\hept{\begin{cases}\left(x-2\right)^{2012}\ge0\\|y^2-9|^{2014}\ge0\end{cases}}\)
\(\Rightarrow\left(x-2\right)^{2012}+|y^2-9|^{2014}\ge0\)
Mà \(\left(x-2\right)^{2012}+|y^2-9|^{2014}=0\)
\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y\in\left\{\pm3\right\}\end{cases}}}\)
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
ta thấy rằng:
\(\left(x-2\right)^{2012}>=0\)
\(\left|y^2-9\right|^{2014}>=0\)
Để \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Thì (x-2)=0 và |y2 - 9|=0
=> x=2 và y= 3
(x−2)2012+∣y2−9∣2014=0
Ta thấy:
\(\left(x-2\right)^{2012}\)≥0;\(\left|y^2-9\right|^{2014}\)≥0
\(\Leftrightarrow\)\(\left(x-2\right)^{2012}=0\) ⇒\(x-2=0\Rightarrow x=2\)
\(\Leftrightarrow\)\(\left|y^2-9\right|^{2014}=0\Rightarrow y^2-9=0\)\(\rightarrow\)\(y^2=9\)
\(\Rightarrow\)\(y=\left\{{}\begin{matrix}3\\-3\end{matrix}\right.\)
Vậy:\(\left[{}\begin{matrix}x=2\\y=3\end{matrix}\right.\) hoàc \(\left[{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Ta có \(\hept{\begin{cases}\left(3x-5\right)^{2008}\ge0\\\left(y^2-1\right)^{2010}\ge0\\\left(x-z\right)^{2012}\ge0\end{cases}}\)mà \(\left(3x-5\right)^{2008}+\left(y^2-1\right)^{2010}+\left(x-z\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}\left(3x-5\right)^{2008}=0\\\left(y^2-1\right)^{2010}=0\\\left(x-z\right)^{2012}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1;-1\\z=x=\frac{5}{3}\end{cases}}\)
\(x=2\)
\(y=3\)
\(\Rightarrow x\cdot y=2\cdot3=6\)
x=2
y=3
\(\Rightarrow x.y=2.3=6\)NHA BAN