Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
a) theo t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)
=> x = -6; y= 8; z= -14
b) từ 5x=6y và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\) => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)
=> \(x=24;y=20;z=15\)
a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)
Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)
b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)
Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)
Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)
c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)
khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a