Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<br class="Apple-interchange-newline"><div id="inner-editor"></div>x>2;y>1
Khi đó Pt ⇔36√x−2 +4√x−2+4√y−1 +√y−1=28
theo BĐT Cô si ta có 36√x−2 +4√x−2≥2.√36√x−2 .4√x−2=24
và 4√y−1 +√y−1≥2√4√y−1 .√y−1=4
Pt đã cho có VT>= 28 Dấu "=" xảy ra ⇔
36√x−2 =4√x−2⇔x=11
và 4√y−1 =√y−1⇔y=5
Đối chiếu với ĐK thì x=11; y=5 là nghiệm của PT
a,ĐKXĐ:\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)
\(\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\left(đk:x;y>0\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)
Do x,y là các số thực dương nên sử dụng BĐT AM-GM cho 2 số không âm ta có :
\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}=2\)
\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2\)
Cộng theo vế các bất đẳng thức cùng chiều ta được :
\(\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge2+2=4\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\Leftrightarrow x=1\\\frac{1}{\sqrt{y}}=\sqrt{y}\Leftrightarrow y=1\end{cases}\Leftrightarrow}x=y=1\)
Vậy nghiệm của phương trình trên là \(x=y=1\)
chịu thua vô điều kiện xin lỗi nha : v
muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)
Ta có: \(VT=\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right)+\left(\frac{1}{\sqrt{y}}+\sqrt{y}\right)\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=4=VP\)
Dấu "=" xảy ra khi và chỉ khi \(x=1;y=1\)
Vậy \(\left(x;y\right)=\left(1;1\right)\) là nghiệm của phương trình