Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2=14\\y=13.2=26\end{matrix}\right.\)
Vật \(x=14;y=26\)
b) (Chỗ này bạn viết nhầm thì phải)
Ta có:
\(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}\)
và \(x-y=-16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=7.4=28\end{matrix}\right.\)
Vậy \(x=12;y=28\)
c) Ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}\)
và \(2x-y=34\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2x=38.2=76\Rightarrow x=38\\y=21.2=42\end{matrix}\right.\)
Vậy \(x=38;y=42\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.4=36=6^2=\left(-6\right)^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\y^2=16.4=64=8^2=\left(-8\right)^2\Rightarrow\left[{}\begin{matrix}y=8\\y=-8\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x:y\right)\in\left\{\left(6;8\right);\left(6;-8\right);\left(-6;8\right);\left(-6;-8\right)\right\}\)
Cả 4 cái có 1 câu huyền thoại:"Áp dụng tính chất dãy tỉ số = nhau ta có" nên mk nói cho cả 4 lun :v
a) \(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)
b) \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.19=38\\y=2.21=42\end{matrix}\right.\)
c) \(7x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x-y}{3-7}=\dfrac{-16}{-4}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=4.3=12\\y=4.7=28\end{matrix}\right.\)
c) \(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=4.9=36\Rightarrow x=\pm6\\y^2=4.16=64\Rightarrow y=\pm8\end{matrix}\right.\)
\(\)
Tìm x và y biết :
a) \(\dfrac{x}{y}=-2\) và \(x+y=12\)
Ta có : \(\dfrac{x}{y}=-2\Rightarrow x=-2y\)
\(x+y=12\Rightarrow-2y+y=12\Rightarrow y=-12\)
\(\Rightarrow x=-2y=-2.\left(-12\right)=24\)
b) \(\dfrac{x}{y}=\dfrac{1}{4}\) và \(x-y=-15\)
Ta có : \(\dfrac{x}{1}=\dfrac{y}{4}=\dfrac{x-y}{1-4}=\dfrac{-15}{-3}=5\)
\(\dfrac{x}{1}=5\Rightarrow x=5\)
\(\dfrac{y}{4}=5\Rightarrow y=20\)
c) \(\dfrac{x}{3}=\dfrac{y}{5}\) và \(x-y=32\)
Ta có : \(\dfrac{x-y}{3-5}=\dfrac{32}{-2}=-16\)
\(\dfrac{x}{3}=-16\Rightarrow x=-48\)
\(\dfrac{y}{5}=-16\Rightarrow y=-80\)
d) \(\dfrac{x}{y}=\dfrac{7}{3}=>\dfrac{x}{7}=\dfrac{y}{3}\)
Ta có : \(\dfrac{x}{7}=\dfrac{y}{3}=\dfrac{x+y}{7+3}=\dfrac{40}{10}=4\)
\(\dfrac{x}{7}=4=>x=28\)
\(\dfrac{y}{3}=4=>y=12\)
e) \(\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{x+y}{5+9}=\dfrac{56}{14}=4\)
\(\dfrac{x}{5}=4=>x=20\)
\(\dfrac{y}{9}=4=>y=36\)
f) \(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x-y}{7-10}=\dfrac{36}{-3}=-12\)
\(\dfrac{x}{7}=-12=>x=-84\)
\(\dfrac{y}{10}=-12=>y=-120\)
ìm x và y biết:
a,xyxy= -2 và x+y =12
b,xyxy=1414 và x-y =-15
c,x3x3=y5y5 và x-y =32
d,xyxy=7373 và x+y =40
e,x5x5=y9y9 và x+y =56
f,x7x7=y10y10 và x-y =36
haha
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
Ta có \(\frac{x+5}{2}=\frac{y-2}{3}\)và \(x-y=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y-2}{2-3}=\frac{x-y+5-2}{2-3}=\frac{-10+5-2}{2-3}=\frac{-7}{-1}=7\)
=> \(\frac{x+5}{2}=7\)=> x + 5 = 14 => x = 9
và \(\frac{y-2}{3}=7\)=> y - 2 = 21 => y = 23
a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)
\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)
\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)
Vậy x = 51; y = 9
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)
\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)
Vậy x = 38; y = 42.
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) và \(x+y\) \(=60\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)
\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)
+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)
Vậy \(x=51\) ; \(y=9\)
Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\) và \(2x-y=34\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)
+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)
+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)
Vậy \(x=38\) ; \(x=42\)
a,Áp dụng dãy tỉ số bằng nhau ta có
\(\dfrac{x}{5}\)=\(\dfrac{y}{2}\)=\(\dfrac{3x}{15}\)=\(\dfrac{2x}{4}\)=\(\dfrac{3x-2x}{15-4}\)=\(\dfrac{44}{11}\)=4
Suy ra
\(\dfrac{x}{5}\)=4=>x=4x5=20
\(\dfrac{y}{2}\)=4=>y=4x2=8
vậy x=20;y=8
a)\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)
\(\dfrac{x}{3}=2\Rightarrow x=6\)
\(\dfrac{y}{7}=2\Rightarrow y=14\)
b)\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)
\(\dfrac{x}{5}=2\Rightarrow x=10\)
\(\dfrac{y}{2}=2\Rightarrow y=4\)
\(\left\{{}\begin{matrix}\dfrac{x^2.y^2}{10}=\dfrac{x^2-2y^2}{7}\\x^4.y^4=81\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7.x^2+7.y^2=10.x^2-20.y^2\\\left(x^2.y^2\right)^2=81\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}3.x^2=27.y^2\\x^2.y^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\x^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\9.y^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
(+) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x^2=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x^2=9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=1\\x=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=9\end{matrix}\right.\end{matrix}\right.\)
Vậy y=1 , x=-9 y=1 , x=9
y=-1 , x=-9 y=-1 , x=9
Đặt \(x^2=a\)(a≥0),\(y^2=b\)(b≥0)
Ta có:\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}vàa^2b^2=81\)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\)(1)
\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\left(2\right)\)
Từ (1) và (2) ⇒\(\dfrac{a}{9}=b\)⇒a=9b
Do \(a^2b^2=81nên\left(9b\right)^2b^2=81\)⇒\(b^4=1\)⇒b=2(Vì b≥0)
Suy ra :a=9.1=9 mà x2=a;y2=b⇒ x2=9 và y2=1
⇒xϵ{3;-3} và yϵ{1;-1}
\(\dfrac{x}{y}=\dfrac{7}{10}=>\dfrac{x}{7}=\dfrac{y}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)
=>x=2.7=14
=>y=2.10=20
\(\dfrac{x}{y}=\dfrac{7}{10}\)
\(\Rightarrow\dfrac{x}{7}=\dfrac{y}{10}\) và \(x+y=34\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{10}=\dfrac{x+y}{7+10}=\dfrac{34}{17}=2\)
\(\Rightarrow\dfrac{x}{7}=2\rightarrow x=7.2=14\)
\(\dfrac{y}{10}=2\rightarrow y=10.2=20\)
Vậy \(x=14;y=20\)
Chúc bạn học tốt <3