\(a,\left(x-5\right)^2+\left(y+2\right)^4=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

a, Vì \(\left(x-5\right)^2\ge0\forall x;\left(y+2\right)^4\ge0\forall y\)

\(\Rightarrow\left(x-5\right)^2+\left(y+2\right)^4\ge0\forall x;y\)

mà \(\left(x-5\right)^2+\left(y+2\right)^4=0\)

Đẳng thức xảy ra khi x = 5 ; y = -2

b, Vì \(\left(x-5\right)^6\ge0\forall x;\left(y+4\right)^8\ge0\forall y\)

\(\Rightarrow\left(x-5\right)^6+\left(y+4\right)^8\ge0\forall x;y\)

mà \(\left(x-5\right)^6+\left(y+4\right)^8=0\)

Đẳng thức xảy ra khi x = 5 ; y = -4

29 tháng 8 2017

hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi

12 tháng 9 2018

Lí luận chung cho cả 3 câu :

Vì GTTĐ luôn lớn hơn hoặc bằng 0 

a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)

b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)

c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)

\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)

\(\Rightarrow2\left(x+y+z\right)=0,2\)

\(\Rightarrow x+y+z=0,1\)

Từ đây tìm đc x, y, z

29 tháng 9 2016

a/ Ta luôn có : \(\begin{cases}x^2\ge0\\\left(y-\frac{1}{10}\right)^4\ge0\end{cases}\)\(\Rightarrow x^2+\left(y-\frac{1}{10}\right)^4\ge0\)

Để dấu "=" xảy ra thì x = 0 , y = 1/10

b/ Tương tự.

22 tháng 1 2018

a, => (-2)^x = -(2^2)^6.(2^3)^15 

=> (-2)^x = -2^12.2^15 = -2^27 = (-2)^27

=> x = 27

b, Vì |x+5| và (3y-4)^2012 đều >= 0 

=> |x+5|+(3y-4)^2012 >= 0

Dấu "=" xảy ra <=> x+5=0 và 3y-4=0 <=> x=-5 và y=4/3

c, => (2x-1)^2+|2y-x| = 12-5.2^2+8 = 0

Vì (2x-1)^2 và |2y-x| đều >= 0

=> (2x-1)^2+|2y-x| >= 0

Dấu "=" xảy ra <=> 2x-1=0 và 2y-x=0 <=> x=1/2 và y=1/4

Tk mk nha

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

9 tháng 12 2016

a)\(f\left(-1\right)=\left(-1\right)^2+5\cdot\left(-1\right)=1+\left(-5\right)=-4\)

\(f\left(-2\right)=\left(-2\right)^2+5\cdot\left(-2\right)=4+\left(-10\right)=-6\)

\(f\left(0\right)=0^2+5\cdot0=0\)

b)\(f\left(x\right)=-6\Leftrightarrow x^2+5x=-6\)

\(x^2+5x-\left(-6\right)=0\)

\(x^2+5x+6=0\)

\(x^2+2x+3x+6=0\)

\(x\left(x+2\right)+3\left(x+2\right)=0\)

\(\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow x+2=0\) hoặc x+3=0

\(\Rightarrow\)x=-2 hoặc -3

9 tháng 12 2016

a) f(-1) = (-1)2 + 5(-1) = -4 =y

tuong tu

b) x2 + 5x = -6

x2 +5x +6 = 0 => x2 +3x +2x +6 = 0

(x+3)(x+2) = 0

x = -3; x = -2

( chiều yên tâm đi học r)

 

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

18 tháng 6 2017

Bài 1:

a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy \(y=\dfrac{4}{25}\)

Chúc bạn học tốt!!!

18 tháng 6 2017

Bài 1:

a, \(2y\left(y-\dfrac{1}{7}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)

Vậy...

b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)

\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)

\(\Rightarrow y=\dfrac{4}{25}\)

Vậy...

Bài 2:

a, \(x\left(x-\dfrac{4}{7}\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)

\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)

Vậy...

Các phần còn lại tương tự nhé

5 tháng 8 2017

2) \(\dfrac{x}{y}=\left(\dfrac{x}{y}\right)^2\)

\(\Rightarrow\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}=0\)

\(\Rightarrow\dfrac{x}{y}\left(\dfrac{x}{y}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{y}=0\Rightarrow x=0;y\in R\\\dfrac{x}{y}-1=0\Rightarrow\dfrac{x}{y}=1\Rightarrow x=y\end{matrix}\right.\)

3) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.2^5+2^{15}.1=2^{15}.33⋮33\rightarrowđpcm\)

4)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{matrix}\right.\)

\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-y-4\right)^{200}\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-y-4\right)^{200}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x-12+y=0\Rightarrow x+y=12\\x-y-4=0\Rightarrow x-y=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)+\left(x-y\right)=12+4\Rightarrow x+y+x-y=16\Rightarrow2x=16\Rightarrow x=8\\y=8-4=4\end{matrix}\right.\)