Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x,y biết
a) 2I2x-3I=\(\frac{1}{2}\)
b)7,5-3I5-2xI=-4,5
c)I3x-4I+I3y+5I=0
d)3,7+I4,3-xI=0
e)4-I5x-2I=1
a) \(2\left|2x-3\right|=\frac{1}{2}\)
\(\left|2x-3\right|=\frac{1}{2}:2\)
\(\left|2x-3\right|=\frac{1}{4}\)
\(\orbr{\begin{cases}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}2x=\frac{13}{4}\\2x=\frac{11}{4}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{13}{8}\\x=\frac{11}{8}\end{cases}}\)
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(\orbr{\begin{cases}5-2x=4\\5-2x=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=1\\2x=9\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
Bài 6:
\(M=\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(M\ge\left|2002-x+x-2001\right|=\left|1\right|=1\)
Dấu " = " khi \(\left\{{}\begin{matrix}2002-x\ge0\\x-2001\ge0\end{matrix}\right.\Rightarrow2001\le x\le2002\)
Vậy \(MIN_M=1\) khi \(2001\le x\le2002\)
Bài 8:
a, Ta có: \(A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)
Vậy \(MIN_A=3,7\) khi x = 4,3
b, \(B=\left|3x+8,4\right|-24,2\ge-24,2\)
Dấu " = " khi \(\left|3x+8,4\right|=0\Rightarrow x=-2,3\)
Vậy \(MIN_B=-24,2\) khi x = -2,3
c, Ta có: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)
\(\Rightarrow C\ge17,5\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-1,5\end{matrix}\right.\)
Vậy \(MIN_C=17,5\) khi \(x=\dfrac{3}{4}\) và y = -1,5
Bài 9:
a, \(D=5,5-\left|2x-1,5\right|\le5,5\)
Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)
Vậy \(MIN_D=5,5\) khi x = 0,75
b, c tương tự
a)\(2\left|2x-3\right|=\frac{1}{2}\)
\(\Leftrightarrow\left|2x-3\right|=\frac{1}{4}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=\frac{1}{4}\\2x-3=-\frac{1}{4}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{13}{8}\\x=\frac{11}{8}\end{matrix}\right.\)
Vậy....
b)\(7,5-3\left|5-2x\right|=-4,5\)
\(\Leftrightarrow\left|5-2x\right|=4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{9}{2}\end{matrix}\right.\)
VẬy...
c)\(\left|3x-4\right|+\left|5-2x\right|=0\)
Có: \(\left|3x-4\right|\ge0với\forall x\\ \left|5-2x\right|\ge0với\forall x\)
\(\Rightarrow\left[{}\begin{matrix}3x-4=0\\5-2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{3}\\x=\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\varnothing\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}3x-2>-4\\3x-2< 4\end{matrix}\right.\Leftrightarrow-\dfrac{2}{3}< x< 2\)
c: \(\Leftrightarrow\left[{}\begin{matrix}3x-1>5\\3x-1< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>2\\x< -\dfrac{4}{3}\end{matrix}\right.\)
d: \(\Leftrightarrow\left[{}\begin{matrix}3x+1>x-2\\3x+1< -x+2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x>-3\\4x< 1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{3}{2}\\x< \dfrac{1}{4}\end{matrix}\right.\)
a) \(\left|x-2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=x\\x-2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=2\left(loại\right)\\x+x=2\end{matrix}\right.\)
\(\Leftrightarrow2x=2\)
\(\Leftrightarrow x=1\left(tm\right)\)
Vậy ......................
b) \(\left|x+2\right|=x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2=x\\x+2=-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-x=-2\left(loại\right)\\x+x=-2\end{matrix}\right.\)
\(\Leftrightarrow2x=-2\)
\(\Leftrightarrow x=-1\left(tm\right)\)
Vậy ...............
c) Ta có ;
\(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Mà :
\(\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left|x-3,4\right|+\left|2,6-x\right|\ge\left|x-3,4+2,6-x\right|=\left|-0,8\right|=0,8>0\)
\(\Leftrightarrow\) ko tồn tại \(x\)
Ta có: 10x=6y=5z⇔x110=y16=z1510x=6y=5z⇔x110=y16=z15 và x+y−z=24x+y−z=24
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x110=y16=z15=x+y−z110+16−15=24:115=360x110=y16=z15=x+y−z110+16−15=24:115=360
=> x = 360 : 10 = 36
y = 360 : 6 = 60
z = 360 : 5 = 72
dựa theo lm nhá ! chúc học tốt
2|2x - 3| = 1/2
=> |2x - 3| = 1/4
=> 2x - 3 = 1/4 hoặc 2x - 3 = -1/4
đến đây dễ bn tự tính được