Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!
20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
Một lời khuyên chân thành nhất :
Bạn lên đi hỏi cô giáo về câu hỏi này của bạn !
rất cảm ơn bn nhưng cô huyền sẽ chửi mk là hok rồi mà ko biết
\(2,\frac{9}{x}=\frac{2}{5}-\frac{7}{20}\)
\(\Rightarrow\frac{9}{x}=\frac{1}{20}\)
\(\Rightarrow x=9.20\)
\(\Rightarrow x=180\)
\(\frac{x}{5}=\frac{5}{6}+\left(-\frac{19}{30}\right)\)
\(\frac{\Rightarrow x}{5}=\frac{1}{5}\)
\(\Rightarrow x=1\)
Ta có:\(\left(2x+6\right)^2\ge0\)
\(5\left(y-3\right)^{20}\ge0\)
\(\Rightarrow\left(2x+6\right)^2+5\left(y-3\right)^{20}\ge0\)
Mà \(\left(2x+6\right)^2+5\left(y-3\right)^{20}\le0\)
\(\Rightarrow\left(2x+6\right)^2+5\left(y-3\right)^{20}=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=0\\5\left(y-3\right)^2=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}2x+6=0\\y-3=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=3\end{matrix}\right.\)
1.
Ta thấy $(x-13)^2\geq 0$ với mọi $x$
$\Rightarrow T=(x-13)^2-26\geq 0-26=-26$
Vậy GTNN của $T$ là $-26$.
Giá trị này đạt tại $x-13=0\Leftrightarrow x=13$
2.
Ta thấy: $(x-14)^2\geq 0$ với mọi $x$
$\Rightarrow M=20-(x-14)^2\leq 20-0=20$
Vậy $M_{\max}=20$. Giá trị này đạt tại $x-14=0$
Hay $x=14$.
Vì VT > = 0 => Vt = 0 <=> x+5 = 0 và y+2 = 0
<=> x=-5 và y=-2
k mk nha
Vt là j bạn ơi mk ko hiểu