![](https://rs.olm.vn/images/avt/0.png?1311)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
![](https://rs.olm.vn/images/avt/0.png?1311)
30 tháng 8 2021
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
![](https://rs.olm.vn/images/avt/0.png?1311)
11 tháng 7 2019
M=x3+x2y−2x2−xy−y2+3y+x−1
=(x3+x2y−2x2)−(xy+y2−2y)+y+x−1
=x2(x+y−2)−y(x+y−2)+(y+x−2)+1
=x2.0−y.0+0+1
=1
N=x3−2x2−xy2+2xy+2y−2x−2
=(x3−2x2+x2y)−(x2y+xy2−2xy)+2y+2x−4−4x+2
=x2(x−2+y)−xy(x+y−2)+2(y+x−2)−4x+2
=x2.0−xy.0+2.0−4x+2
=2−4x
Nhân 2 vế của pt cho 2 : \(2x^2+2y^2+2xy-2x+2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)(1)
Vì \(\left(x+y\right)^2,\left(x-1\right)^2,\left(y+1\right)^2\ge0\)nên pt (1) có nghiệm khi và chỉ khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}}\)
Vậy pt có nghiệm duy nhất (x;y)=(1;-1)
\(x^2+y^2+xy-x+y+1=0\)
\(\Leftrightarrow2x^2+2y^2+2xy-2x+2y+2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(x-1\right)^2\ge0\\\left(y+1\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}\left(tm\right)\)
Vậy pt có nghiệm là x = 1 ; y = - 1