K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3

a: \(x:y=3:4\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\\ \dfrac{x}{3}=2=>x=6\\ \dfrac{y}{4}=2=>y=8\)

Vậy x = 6; y = 8

B; gọi x; y;z vậy lần lượt là số đo 3 góc của tam giác ABC

ta có: \(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x+y+z}{5+6+7}=\dfrac{180}{18}=10\)

\(\dfrac{x}{5}=10=>x=50\\ \dfrac{y}{6}=10=>y=60\\ \dfrac{z}{7}=10=>z=70\)

Vậy số đo của 3 góc trong △ ABC lần lượt là 50 độ; 60 độ; 70 độ

Theo đề ta có:

x.y=24

x/3=y/2

Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{2}=\frac{x.y}{3.2}\) 

\(=\frac{24}{6}=4\)

\(\Rightarrow x=3.4=12\)

\(\Rightarrow y=2.4=8\)

6 tháng 9 2017

Đặt \(k=\frac{x}{3}=\frac{y}{2}\)

Suy ra : \(k^2=\frac{x.y}{3.2}=\frac{24}{6}=4\)

Nên : k = -2;2

+ k = -2 thì \(\frac{x}{3}=-2\Rightarrow x=-6\)

                  \(\frac{y}{2}=-2\Rightarrow x=-4\)

+ k = 2 thì \(\frac{x}{3}=2\Rightarrow x=6\)

                  \(\frac{y}{2}=2\Rightarrow x=4\)

Vậy ......................

Bài 2 :

Vì tam giác abc có số đo các góc a ,b,c lần lượt tỉ lệ là:3:4:5 . 

Nên : \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)

Tổng 3 góc trong 1 tam giác bằng 180o 

Nên : a + b + c = 180

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}==\frac{180}{12}=15\)

Nên : \(\frac{a}{3}=180\Rightarrow a=60\)

          \(\frac{b}{4}=180\Rightarrow b=45\)

           \(\frac{c}{5}=180\Rightarrow c=36\)

Vậy a = 60 ; b = 45 ; c = 36

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \)

Mà số đo ba góc \(\widehat A,\widehat B,\widehat C\) của tam giác ABC tỉ lệ với 5;6;7 nên \(\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\begin{array}{l}\dfrac{{\widehat A}}{5} = \dfrac{{\widehat B}}{6} = \dfrac{{\widehat C}}{7} = \dfrac{{\widehat A + \widehat B + \widehat C}}{{5 + 6 + 7}} = \dfrac{{180^\circ }}{{18}} = 10^\circ \\ \Rightarrow \widehat A = 10^\circ .5 = 50^\circ \\\widehat B = 10^\circ .6 = 60^\circ \\\widehat C = 10^\circ .7 = 70^\circ \end{array}\)

Vậy số đo 3 góc \(\widehat A,\widehat B,\widehat C\) lần lượt là \(50^\circ ;60^\circ ;70^\circ \)

Bài làm

Gọi số đo của ba góc A, B, C lần lượt là x, y, z

Mà số đo của các góc lần lượt tỉ lệ với \(\frac{1}{2};\frac{1}{3};\frac{2}{5}\)

=> \(x.\frac{1}{2}.\frac{1}{30}\)\(x.\frac{1}{3}.\frac{1}{30}\)=\(x.\frac{2}{5}.\frac{1}{30}\)

=> \(\frac{x}{60}\)\(\frac{y}{90}\)\(\frac{z}{75}\)

Vì theo định lí, tổng ba góc của tam giác là 180o

=> x + y + z = 180o

Áp dụng tính chất dãy tỉ số bằng nhau:

Ta có: \(\frac{x}{60}=\frac{y}{90}=\frac{z}{75}=\frac{x+y+z}{60+90+75}=\frac{180}{225}=\frac{36}{45}=\frac{4}{5}\)

Do đó: \(\hept{\begin{cases}\frac{x}{60}=\frac{4}{5}\\\frac{y}{90}=\frac{4}{5}\\\frac{z}{75}=\frac{4}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=48\\y=72\\z=60\end{cases}}\)

Vậy độ dài của góc A là 48o

       độ dài của góc B là 72o

       độ dài của góc C là 60o

# Chúc bạn học tốt #

10 tháng 5 2017

Theo đề bài ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+5+7}=\dfrac{180^o}{15}=12^o\)

\(\Rightarrow\widehat{A}=12^o.3=36^o\)

\(\widehat{B}=12^o.5=60^o\)

\(\widehat{C}=12^o.7=84^o\)

16 tháng 7 2017

nếu số đo (độ) các góc của tam giác ABC là A , B , C (độ) thì theo điều kiện bài ra và tính chất của dãy tỉ số bằng nhau , ta có \(\dfrac{A}{3}=\dfrac{B}{5}=\dfrac{C}{7}=\dfrac{A+B+C}{3+5+7}=\dfrac{180}{15}=12\)

vậy : A = 3 . 12 = 36

B = 5 . 12 = 60

C = 7 . 12 = 84

=> A = 36 (độ) ; B = 60 (độ) ; C = 84 (độ)

9 tháng 8 2016

TRỜI ! MỘT BÀI TOÁN BÙ ĐẦU BÙ ÓC

11 tháng 8 2016

bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó

`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`

Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`

`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`

`-> x+y+z=180`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`

`-> x/2=y/3=z/4=20`

`->x=20*2=40, y=20*3=60, z=20*4=80`

Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`

a:

Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)

a/2=b/3=c/4

b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20

=>a=40; b=60; c=80

23 tháng 12 2020
Gọi số đo các góc A,B,C lần lượt là m,u,n Ta có m/5=u/6=n/7 và m+u+n=180 Theo tính chất dãy tỉ bằng nhau ta có: m/5=u/6=n/7=m+u+n/5+6+7=180/18=10 m/5=10=>m=5.10=50 u/6=10=>u=6.10=60 n/7=10=>n=7.10=70 Trả lời: Số đo góc A là 50 độ Số đo góc B là 60 độ Số đo góc C là 70 độ Cái này mik làm đại có j sai hok biết nha 🤣🤣
8 tháng 11 2021

Áp dụng tc dstbn:

\(\dfrac{\widehat{A}}{5}=\dfrac{\widehat{B}}{6}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{5+6+7}=\dfrac{180^0}{18}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=50^0\\\widehat{B}=60^0\\\widehat{C}=70^0\end{matrix}\right.\)

8 tháng 11 2021

Áp dụng t/c dtsbn:

\(\dfrac{\widehat{A}}{5}=\dfrac{\widehat{B}}{6}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{5+6+7}=\dfrac{180}{18}=10\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=10.5=50^0\\\widehat{B}=10.6=60^0\\\widehat{C}=10.7=70^0\end{matrix}\right.\)

9 tháng 12 2016

1/Tính

\(\left(\frac{3}{7}\right)^{20}:\left(\frac{9}{49}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3^2}{7^2}\right)^5\)

\(=\left(\frac{3}{7}\right)^{20}:\left(\frac{3}{7}\right)^{10}\)

\(=\left(\frac{3}{7}\right)^{10}\)

2/ Ta có:A+B+C = 180 độ ( tổng 3 góc tam giác)

Và : \(A.\frac{1}{2}=B.\frac{1}{3}=C.\frac{2}{5}\)

hay \(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{A}{\frac{2}{1}}=\frac{B}{\frac{3}{1}}=\frac{C}{\frac{5}{2}}=\frac{A+B+C}{\frac{2}{1}+\frac{3}{1}+\frac{5}{2}}=\frac{180}{\frac{15}{2}}=24\)

=> \(A=24.\frac{2}{1}=48\)độ

     \(B=24.\frac{3}{1}=72\)độ

      \(C=24.\frac{5}{2}=60\)độ