\(\ne\)0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

25 tháng 10 2020

a) 2x = 3y =7z và x+y-z =58

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)

\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)

\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)

\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)

3 tháng 7 2019

a) |-x + 2| = -|y + 9|

=> |-x + 2| + |y + 9| = 0

Ta có: |-x + 2| \(\ge\)\(\forall\)x

|y + 9| \(\ge\)\(\forall\)y

=> |-x + 2| + |y + 9| \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)

Vậy ...

b) |3x + 4| + |2y - 10| \(\le\)0

Ta có: |3x +  4| \(\ge\)\(\forall\)x

        |2y - 10| \(\ge\)\(\forall\)y

=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)

vậy ...

c) |-x - 3| + |y + 7| < 0

Ta có: |-x - 3| \(\ge\)\(\forall\)x

      |y + 7| \(\ge\)\(\forall\)y

=> |-x - 3| + |y + 7| \(\ge\)\(\forall\)x; y

=> ko có giá trị x, y thõa mãn đb

17 tháng 10 2018

đặt 

\(\frac{x}{5}=\frac{y}{4}=k=>x=5k,y=4k\)

\(=>x^2.y=25k^2.4k=100\)

\(k^3=1=>k=1\)

\(=>x=5,y=4\)

Vậy x=5, y=4

17 tháng 10 2018

Bài 1: HS tự làm

Bài 2:

\(ac=b^2\Rightarrow\frac{a}{b}=\frac{b}{c}\Rightarrow a=c\left(a,b,c\ne0\right)^{\left(1\right)}\)

\(ab=c^2\Rightarrow\frac{a}{c}=\frac{c}{b}\Rightarrow a=b\left(a,b,c\ne0\right)^{\left(2\right)}\)

\(\left(1\right),\left(2\right)\Rightarrow a=b=c\)

\(\Rightarrow\frac{b^{3333}}{a^{1111}c^{2222}}=\frac{b^{3333}}{a^{1111+2222}}=\frac{b^{3333}}{a^{3333}}=1\)

7 tháng 7 2018

a/ |2x - 3| + |y - 2| = 0

Vì: \(\left\{{}\begin{matrix}\left|2x-3\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x-3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=2\end{matrix}\right.\)

b/ |3x - 4| + |x - y| = 0

Vì: \(\left\{{}\begin{matrix}\left|3x-4\right|\ge0\forall x\\\left|x-y\right|\ge0\forall x;y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}3x-4=0\\x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\x=y=\dfrac{4}{3}\end{matrix}\right.\)

Vậy x = y = 4/3

c/ \(\left|2x+y-1\right|+\left|2y-3\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|2x+y-1\right|\ge0\forall x;y\\\left|2y-3\right|\ge0\forall y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2x+y-1=0\\2y-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=-y\\y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=-\dfrac{3}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{4}\\y=\dfrac{3}{2}\end{matrix}\right.\)

Vậy..........

d/ \(\left|x+y-5\right|+\left|2x-y+8\right|=0\)

Vì: \(\left\{{}\begin{matrix}\left|x+y-5\right|\ge0\\\left|2x-y+8\right|\ge0\end{matrix}\right.\)∀x;y

=> \(\left\{{}\begin{matrix}x+y-5=0\\2x-y+8=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=5\\2x-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\2\left(5-y\right)-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\10-2y-y=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\-3y=-18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-6=-1\\y=6\end{matrix}\right.\)

Vậy x = -1; y = 6

28 tháng 9 2018

a/ |2x - 3| + |y - 2| = 0

Vì: {|2x−3|≥0∀x|y−2|≥0∀y{|2x−3|≥0∀x|y−2|≥0∀y

=> {2x−3=0y−2=0⇒⎧⎨⎩x=32y=2{2x−3=0y−2=0⇒{x=32y=2

b/ |3x - 4| + |x - y| = 0

Vì: {|3x−4|≥0∀x|x−y|≥0∀x;y{|3x−4|≥0∀x|x−y|≥0∀x;y

=> {3x−4=0x−y=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=43x=y=43{3x−4=0x−y=0⇔{x=43x=y=43

Vậy x = y = 4/3

c/ |2x+y−1|+|2y−3|=0|2x+y−1|+|2y−3|=0

Vì: {|2x+y−1|≥0∀x;y|2y−3|≥0∀y{|2x+y−1|≥0∀x;y|2y−3|≥0∀y

=> {2x+y−1=02y−3=0⇔⎧⎨⎩2x−1=−yy=32{2x+y−1=02y−3=0⇔{2x−1=−yy=32

⇔⎧⎪ ⎪⎨⎪ ⎪⎩2x−1=−32y=32⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=−14y=32⇔{2x−1=−32y=32⇔{x=−14y=32

Vậy..........

d/ |x+y−5|+|2x−y+8|=0|x+y−5|+|2x−y+8|=0

Vì: {|x+y−5|≥0|2x−y+8|≥0{|x+y−5|≥0|2x−y+8|≥0∀x;y

=> {x+y−5=02x−y+8=0{x+y−5=02x−y+8=0⇔{x+y=52x−y=−8⇔{x+y=52x−y=−8

⇔{x=5−y2(5−y)−y=−8⇔{x=5−y2(5−y)−y=−8

⇔{x=5−y10−2y−y=−8⇔{x=5−y10−2y−y=−8

⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6⇔{x=5−y−3y=−18⇔{x=5−yy=6⇔{x=5−6=−1y=6

Vậy x = -1; y = 6

CHÚC BẠN HỌC TỐThihi