Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự

Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu

\(•\left(x^2-1\right)^2+1=x^2\\ \left(x^2-1\right)^2-x^2+1=0\\ x^4-2x^2+1-x^2+1=0\\ x^4-x^2-2x^2+2=0\\ \left(x^2-1\right)\left(x^2-2\right)=0\\ \left(x+1\right)\left(x-1\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x-1=0\\x+\sqrt{2}=0\\x-\sqrt{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=1\\x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)

1)
x(x-y) = \(\dfrac{3}{10}\)
=> \(x^2-xy=\dfrac{3}{10}\) (1)
y(x-y) = \(-\dfrac{3}{50}\)
=> \(xy-y^2=-\dfrac{3}{50}\) (2)
Trừ (1) cho (2), ta có :
\(x^2-xy-xy+y^2=\dfrac{3}{10}+\dfrac{3}{50}\)
\(\Rightarrow x^2-2xy+y^2=\dfrac{18}{50}=\dfrac{9}{25}\)
=> \(\left(x-y\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x-y=\dfrac{3}{5}\\x-y=-\dfrac{3}{5}\end{matrix}\right.\)
TH1
x- y = \(\dfrac{3}{5}\)
Ta có
\(\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x=\dfrac{3}{10}\\\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{10}\end{matrix}\right.\)
TH2:
x-y=\(-\dfrac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{5}x=\dfrac{3}{10}\\-\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{5}\end{matrix}\right.\)
Vậy các cặp (x,y) thỏa mãn là (x;y) \(\in\left\{\left(\dfrac{1}{2};-\dfrac{1}{5}\right);\left(-\dfrac{1}{2};\dfrac{1}{5}\right)\right\}\)
2) \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
TH1:
\(\left\{{}\begin{matrix}x-3>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>3\\x>-\dfrac{1}{2}\end{matrix}\right.\)
=> x >3
TH2:
\(\left\{{}\begin{matrix}x-3< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x< -\dfrac{1}{2}\end{matrix}\right.\)
=> x <\(-\dfrac{1}{2}\)
Vậy giá trị x thỏa mãn là x < -1/2 hoặc x>3
1)
Từ gt,ta có : x(x - y) - y(x - y) =\(\frac{3}{10}-\frac{-3}{50}\)
(x - y)2 =\(\frac{9}{25}\)\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=\frac{-3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}:\frac{3}{5}=\frac{1}{2}\\x=\frac{3}{10}:\frac{-3}{5}=\frac{-1}{2}\end{cases};\orbr{\begin{cases}y=\frac{-3}{50}:\frac{3}{5}=\frac{-1}{10}\\y=\frac{-3}{50}:\frac{-3}{5}=\frac{1}{10}\end{cases}}}}\)
Vậy\(x=\frac{1}{2};y=\frac{-1}{10}\) hoặc\(x=\frac{-1}{2};y=\frac{1}{10}\)

Tìm x, y, z biết:
a) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Giải
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\) và 2x + 3y + z = 17
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x+3y+z}{4+9+4}=\dfrac{17}{17}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
b) \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và (x - y)2 + (y - z)2 = 2
Giải
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{\left(x-y\right)^2+\left(y-z\right)^2}{\left(2-3\right)^2+\left(3-4\right)^2}=\dfrac{2}{2}=1\)
\(\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{4}=1\Rightarrow z=4\)
Vậy...
Với mọi giá trị của x;y ta có:
\(\left\{{}\begin{matrix}\left(x-11+y\right)^2\ge0\\\left(x-4-y\right)^2\ge0\end{matrix}\right.\Rightarrow\left(x-11+y\right)^2+\left(x-4-y\right)^2\ge0\)
Để \(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\) thì:
\(\left\{{}\begin{matrix}\left(x-11+y\right)^2=0\\\left(x-4-y\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y=11\\x-y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+x-y=11+4\\x+y-x+y=11-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=15\\2y=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=7,5\\y=3,5\end{matrix}\right.\)
Chúc bạn học tốt!!!
Ta có:\(\left(x-11+y\right)^2+\left(x-4-y\right)^2=0\)
mà \(x-11+y\ge0\forall x\) và \(x-4-y\ge0\forall x\)
\(\Rightarrow \begin{cases} x-11+y=0\\ x-4-y=0 \end{cases}\Rightarrow \begin{cases} x+y=11\\ x-y=4 \end{cases}\Rightarrow \begin{cases} x=\dfrac{15}{2}\\ y=\dfrac{7}{2} \end{cases}\)
Vậy \(x=\dfrac{15}{2};y=\dfrac{7}{2}\).