
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{-24}{8}=-3\)
\(\frac{x}{3}=-3\Rightarrow x=\left(-3\right).3=-9\)
\(\frac{y}{5}=-3\Rightarrow y=\left(-3\right).5=-15\)
b) \(\frac{x}{5}=\frac{y}{8}=\frac{x-y}{5-8}=\frac{15}{-3}=-5\)
\(\frac{x}{5}=-5\Rightarrow x=\left(-5\right).5=-25\)
\(\frac{y}{8}=-5\Rightarrow y=\left(-5\right).8=-40\)
c) 7x=4y <=> x/4=y/7
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{12}{11}\)
\(\frac{x}{4}=\frac{12}{11}\Rightarrow x=\frac{12}{11}.4=\frac{48}{11}\)
\(\frac{y}{7}=\frac{12}{11}\Rightarrow y=\frac{12}{11}.7=\frac{84}{11}\)
d) tt câu c
e) x/5=y/8;z/3=y/12 <=> x/60=y/96=z/24
\(\frac{x}{60}=\frac{y}{96}=\frac{z}{24}=\frac{4x}{4.60}=\frac{2y}{2.96}=\frac{z}{24}=\frac{2y+z-4x}{192+24-240}=\frac{30}{-24}=\frac{-5}{4}\)
\(\frac{x}{60}=\frac{-5}{4}\) => x=-5/4.60=-75
y/96=-5/4 => y=-5/4.96=-120
z/24=-5/4 => z=-5/4.24=-30

b)
Vì \(\left(3x-1\right)^{2018}\ge0\forall x\)
\(\left(y+\frac{3}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\forall x;y\)
Để thỏa mãn đ/b => \(\left(3x-1\right)^{2018}=0\Leftrightarrow x=\frac{1}{3}\) và \(\left(y+\frac{3}{5}\right)^{2020}=0\Leftrightarrow y=\frac{-3}{5}\)
Vậy....
a)Ta có : \(3x-y+xy=8=>3\left(x-1\right)+y\left(x-1\right)=5=>\left(3+y\right)\left(x-1\right)=5\)
Đến đây lập bảng là ra .
b)Ta có : \(\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}=0\)
Lại có : \(\left(3x-1\right)^{2018}\ge0;\left(y+\frac{3}{5}\right)^{2020}\ge0=>\left(3x-1\right)^{2018}+\left(y+\frac{3}{5}\right)^{2020}\ge0\)
\(=>\hept{\begin{cases}3x-1=0\\y+\frac{3}{5}=0\end{cases}}=>\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{3}{5}\end{cases}}\)

a) Ta có: \(\hept{\begin{cases}\left|y-1\right|\ge0\forall y\\\left|5-x\right|\ge0\forall x\end{cases}\Rightarrow\left|y-1\right|+\left|5-x\right|\ge0\forall}x;y\)
Mà \(\left|y-1\right|+\left|5-x\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|y-1\right|=0\\\left|5-x\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}y-1=0\\5-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=5\end{cases}}}\)
Vậy \(\hept{\begin{cases}y=1\\x=5\end{cases}}\)
b) Ta có: \(\left|y-6\right|\ge0\forall y\)
\(\Rightarrow\left|y-6\right|>0\Leftrightarrow y\ne6\)
\(\Rightarrow\)Để \(\frac{\left|y-6\right|}{x+2}>0\)thì \(\hept{\begin{cases}y\ne6\\x+2>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
Vậy \(\hept{\begin{cases}y\ne6\\x>-2\end{cases}}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2>0\Leftrightarrow x\ne0\)
Để \(\frac{x^2-1}{x^2}>0\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x\ne0\end{cases}\Leftrightarrow}x>1}\)
Vậy \(x>1\)
Tham khảo nhé~

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

\(\frac{4}{x-3}\)=\(\frac{8}{y-6}\)=\(\frac{20}{z-15}\)
=> \(\frac{x-3}{4}\)=\(\frac{y-6}{8}\)=\(\frac{z-15}{20}\)
=> \(\frac{x}{4}\)-\(\frac{3}{4}\)= \(\frac{y}{8}\)-\(\frac{6}{8}\)=\(\frac{z}{20}\)-\(\frac{15}{20}\)
=> \(\frac{x}{4}\)=\(\frac{y}{8}\)=\(\frac{z}{20}\)
Đặt \(\frac{x}{4}\)=\(\frac{y}{8}\)=\(\frac{z}{20}\)=k
\(\frac{x}{4}\)= k => x = 4 . k
\(\frac{y}{8}\)= k => y = 8 . k
\(\frac{z}{20}\)= k => z = 20 . k
Mà x.y.x = 640
(4k) . (8k) . (20k)= 640
640 . kmũ3 = 640
k mũ 3 = 640:640
k mũ 3 = 1
\(\frac{x}{4}\)= 1 => x = 4 . 1 = 4
\(\frac{y}{8}\)= 1 => y = 8 . 1 = 8
\(\frac{z}{20}\)= 1 => z = 20 . 1=20
Vậy x=4, y=8, z=20
k mình nha,đúng 100%
Ta có:\(\frac{4}{x-3}=\frac{8}{y-6}=\frac{20}{z-15}\)
=>\(\frac{x-3}{4}=\frac{y-6}{8}=\frac{z-15}{20}\)
=>\(\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{6}{8}=\frac{z}{20}-\frac{15}{20}\)
=>\(\frac{x}{4}-\frac{3}{4}=\frac{y}{8}-\frac{3}{4}=\frac{z}{20}-\frac{3}{4}\)
=>\(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}\)
Đặt \(\frac{x}{4}=\frac{y}{8}=\frac{z}{20}=k\Rightarrow x=4k,y=8k,z=20k\)
Thay vào đề ta có: xyz = 640
=> 4k.8k.20k = 640
=> 640k3 = 640
=> k3 = 1
=> k = 1
=> x = 4, y = 8, z = 20
Vậy...