\(\frac{x}{2}=\frac{y}{3}\)và \(x\times y=90...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

x=30

y=45

27 tháng 10 2017

Đặt \(\frac{x}{2}\)=  \(\frac{y}{3}\)=  k

=> \(\frac{x}{2}\)=  2k   ,   \(\frac{y}{3}\)=  3k

Ta có: \(\frac{x}{2}\)=  \(\frac{y}{3}\)=  90

            2k . 3k          =  90

               6k2            =  90

                 k2            =  90:6

                 k           =   15

                 k              = +- ? (Đề bài sai)

Với k = ?

x = 2 . ? = ?

y = 3 . ? = ?

Với k = - ?

x = 2 . (- ?) = ?

y = 3 . (- ?) = ? 

Vậy x = ?

       y = ?

hoặc

     x = -?

     y = -?

           

18 tháng 10 2016

1. Theo t/c của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)

\(\frac{x}{2}=9\Rightarrow x=9.2=18\)

\(\frac{y}{5}=9\Rightarrow y=9.5=45\)

Vậy x = 18 ; y = 45 

18 tháng 10 2016

sai rùi

9 tháng 7 2017

a) Ta có : 

\(\frac{x}{11}=\frac{y}{7}\Leftrightarrow7x-11y=0\)

Ta có hệ : \(\hept{\begin{cases}7x-11y=0\\x+y=-54\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}7x-11y=0\\7x+7y=-378\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-18y=378\\7x+7y=-378\end{cases}\Leftrightarrow\hept{\begin{cases}y=-21\\x=-33\end{cases}}}\)

b,  Ta có : \(\frac{x}{5}=\frac{y}{2}\Leftrightarrow2x=5y\)\(\Leftrightarrow x=\frac{5y}{2}\). Thay vào biểu thức x . y = 90 . Ta được : 

\(\frac{5y}{2}\cdot y=90\Leftrightarrow\frac{5y^2}{2}=90\Leftrightarrow5y^2=180\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)

Với y = 6 => x = \(\frac{5\cdot6}{2}=15\)

Với y = -6 => x = \(\frac{5\cdot\left(-6\right)}{2}=-15\)

5 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x}{9}=\frac{2y}{12}=\frac{3x-2y-z}{9-12-8}=\frac{20}{-11}\)

=>x=60/-11; y=120/-11; z=160/-11

31 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau, ta có

\(\frac{x}{3}=\frac{y}{6}=\frac{z}{8}=\frac{3x-2y-z}{3\times3-2\times6-8}=\frac{20}{-11}\)

Do đó: \(x=\frac{-60}{11}\)\(y=\frac{-120}{11}\),\(z=\frac{-160}{11}\)

            

30 tháng 12 2017

\(\frac{x}{y}=\frac{5}{3}\) <=> 3x=5y <=> \(\frac{x}{5}=\frac{y}{3}\)

+) Theo tính chất DTSBN ta có :

\(\frac{x}{5}=\frac{y}{3}=\frac{2x}{2.5}=\frac{y}{3}=\frac{2x+y}{10+3}=\frac{-26}{13}=-2\)

x/5=-2=>x=(-2).5=-10

y=3=-2=>y=(-2).3=-6

+) Theo tính chất DTSBN ta có :

\(\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{5^2-3^2}=\frac{4}{16}=\frac{1}{4}\)

x/5=1/4=>x=1/4.5=5/4

y/3=1/4=>y=1/4.3=3/4

+) Đặt k ta có : 

\(\frac{x}{5}=k\Rightarrow x=5k\)

\(\frac{y}{3}=k\Rightarrow y=3k\)

x.y=60 <=> 5k.3k = 60

15k2=60

k2=60:15

k2=4

=> k=2

x=5k=2.5=10

y=3k=2.3=6

30 tháng 12 2017

Xét x^2 - y^2 = 4

Để biểu thức trên đúng thì x^2 = 4 và y^2 = 0 

Vậy x có thể có 2 giá trị là -2 và 2

Lại có x . y = 60

Mà số y = 0 nên x . y chắc chắn cũng bằng 0 

Vậy không tồn tại 2 số x và y thỏa mãn các điều kiện trên 

21 tháng 7 2017

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10 

\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)

\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10 

Theo tính chất dãy tỉ số bằng nhau: 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=2.8=16\)

*  \(\frac{y}{12}=2\Rightarrow y=2.12=24\)

\(\frac{z}{5}=2\Rightarrow z=2.5=10\)

Vậy...

21 tháng 7 2017

Ý mk nhầm chút xíu nhé! Cko sorry! 

\(\frac{z}{15}=2\Rightarrow z=2.15=30\)

... :( Xl

9 tháng 12 2016

a, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{5x}{15}=\frac{2y}{8}=\frac{5x-2y}{15-8}=\frac{28}{7}=4\)

=> x = 4.3 = 12

y = 4.4 = 16

b, \(x:2=y:\left(-5\right)\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

=> x = (-1).2 = -2

y = (-1)(-5) = 5

c, \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-10}=\frac{10}{10}=1\)

=> x = 8

y =12

z = 15

24 tháng 7 2018

mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau

1)  Áp dụng tính chất dãy tỉ số bằng nhau ta có     

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

suy ra:  \(\frac{x}{3}=2\)=>  \(x=6\)

            \(\frac{y}{4}=2\)=>  \(y=8\)

Vậy...

2)  Áp dụng tính chất dãy tỉ số bằng nhau ta có:

   \(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)

suy ra:  \(\frac{x}{5}=10\)=>  \(x=50\)

             \(\frac{y}{3}=10\)=>  \(y=30\)

Vậy...

16 tháng 8 2019

Ta có 

  \(\frac{x}{2}=\frac{y}{4}=\frac{3z}{5}\)\(\Rightarrow\)\(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)

Từ \(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}\)theo tính chất của dãy tỉ số bằng nhau, ta có :

    \(\frac{3x}{6}=\frac{3y}{12}=\frac{3z}{5}=\frac{3x-3y+3z}{6-12+5}=\frac{3\left(x-y+z\right)}{-1}=-15\left(x-y+z=5\right)\) 

Suy ra

  \(\frac{x}{2}=-15\Rightarrow x=-15.2\Rightarrow x=-30\)

  \(\frac{y}{4}=-15\Rightarrow y=-15.4\Rightarrow y=-60\)

  \(\frac{3z}{5}=-15\Rightarrow3z=-15.5\Rightarrow z=-75\div3\Rightarrow z=-25\)

               Vậy \(x=-30;y=-60;z=-25\)