\(x,y\) biết : 

                     \(\dfrac{x^2+y^2}{1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

\(\left\{{}\begin{matrix}\dfrac{x^2.y^2}{10}=\dfrac{x^2-2y^2}{7}\\x^4.y^4=81\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}7.x^2+7.y^2=10.x^2-20.y^2\\\left(x^2.y^2\right)^2=81\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}3.x^2=27.y^2\\x^2.y^2=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\x^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\9.y^2.y^2=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=9.y^2\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)

(+) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x^2=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x^2=9\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=1\\x=9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=-9\end{matrix}\right.\\\left\{{}\begin{matrix}y=-1\\x=9\end{matrix}\right.\end{matrix}\right.\)

Vậy y=1 , x=-9 y=1 , x=9

y=-1 , x=-9 y=-1 , x=9

10 tháng 6 2017

Đặt \(x^2=a\)(a≥0),\(y^2=b\)(b≥0)

Ta có:\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}vàa^2b^2=81\)

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\dfrac{3b}{3}=b\)(1)

\(\dfrac{a+b}{10}=\dfrac{a-2b}{7}=\dfrac{2a+2b}{20}=\dfrac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\dfrac{3a}{27}=\dfrac{a}{9}\left(2\right)\)

Từ (1) và (2) ⇒\(\dfrac{a}{9}=b\)⇒a=9b

Do \(a^2b^2=81nên\left(9b\right)^2b^2=81\)\(b^4=1\)⇒b=2(Vì b≥0)

Suy ra :a=9.1=9 mà x2=a;y2=b⇒ x2=9 và y2=1

⇒xϵ{3;-3} và yϵ{1;-1}

31 tháng 5 2017

Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)

\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

15 tháng 7 2017
 

Đặt x2+y210 =x22y27 =k

{

x2+y2=10k(1)
x22y2=7k(2)

Từ 2 ta có :

x2 = 7k + 2y2 

Thay ngược vào (1) , ta lại có :

7k + 2y2 + y2 = 10k

=> y2 = k

<=> x2 = 9k

Thay x2 , y2 vào biểu thức x4.y4 = 81

=> 81k2 . k2 = 81

=> k4 = 1

=> k = 1 hoặc = -1

Với k = 1 thì x = 3 hoặc -3 

               và y = 1 hoặc -1

Với k = -1 thì x,y không có giá trị thõa mãn 

nha các bạn
 
15 tháng 7 2017

\(\dfrac{x-2}{4}=\dfrac{y+1}{5}=\dfrac{z+3}{7}\)

\(\Rightarrow\dfrac{2\left(x-2\right)}{8}=\dfrac{y+1}{5}=\dfrac{2\left(z+3\right)}{14}\)

\(\Rightarrow\dfrac{2x-4}{8}=\dfrac{y+1}{5}=\dfrac{2z+6}{14}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{2x-4+y+1-2z-6}{8+5-14}\)

\(=\dfrac{2x+y-2z-9}{-1}\)

\(=\dfrac{7-9}{-1}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-2}{4}=2\Rightarrow x-2=8\Rightarrow x=10\\\dfrac{y+1}{5}=2\Rightarrow y+1=10\Rightarrow y=9\\\dfrac{z+3}{7}=2\Rightarrow z+3=14\Rightarrow z=11\end{matrix}\right.\)

23 tháng 8 2017

\(\dfrac{6}{11}x=\dfrac{9}{2}y=\dfrac{18}{5}z\)

\(\Leftrightarrow\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{x+y+z}{\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-196}{\dfrac{42}{18}}=\dfrac{-98}{\dfrac{21}{18}}=\dfrac{-588}{7}\)

(thấy lẻ,nếu đề ko sai thì làm tiếp)

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Rightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

\(=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\\2z=4x\\4y=3z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y-z}{2+3-4}=\dfrac{-10}{1}=-10\)

\(\Rightarrow\left\{{}\begin{matrix}x=-10.2=-20\\y=-10.3=-30\\z=-10.4=-40\end{matrix}\right.\)

Vậy......

23 tháng 8 2017

tks nha bn

3 tháng 1 2016

Ta có: \(\frac{x^2+y^2}{10}=\frac{2x^2+2y^2}{20}=\frac{x^2-2y^2}{7}=\frac{\left(2x^2+2y^2\right)-\left(x^2-2y^2\right)}{20+7}=\frac{3x^2}{27}\)(theo t/c của dãy TSBN)

=>\(\frac{x^2+y^2}{10}=\frac{3x^2+3y^2}{30}=\frac{3x^2}{27}=\frac{\left(3x^2+3y^2\right)-3x^2}{30-27}=\frac{3y^2}{3}\) (theo t/c của dãy TSBN)

=>\(\frac{3x^2}{27}=\frac{3y^2}{3}\)

=>\(\frac{x^2}{3^2}=y^2\)

=>\(\left(\frac{x}{3}\right)^2=y^2\)

=>\(\frac{x}{3}=y\) hoặc \(\frac{x}{3}=-y\)

=>x=3y hoặc x=-3y

Ta có: x4y4=81

=>(xy)4=34=(-3)4

=>xy=3 hoặc xy=-3

TH1: xy=3

Thay x=3y và x=-3y lần lượt vào ta được x=3 và y=1

TH2:xy=-3

Thay x=3y và x=-3y lần lượt vào ta được x=3; y=-1 hoặc x=-3; y=1

Vậy (x;y)\(\in\){(3;1);(-3;1);(3;-1)}

3 tháng 1 2016

kaitovskudo  Cô bé lo lem làm chi tiết dùm mk

Câu 2: 

\(\dfrac{x+2000}{x-2000}=\dfrac{y+2001}{y-2001}\)

\(\Leftrightarrow\left(x+2000\right)\left(y-2001\right)=\left(x-2000\right)\left(y+2001\right)\)

\(\Leftrightarrow xy-2001x+2000y-4002000=xy+2001x-2000y-4002000\)

=>-2001x+2000y=2001x-2000y

=>-4002x=-4000y

=>2001x=2000y

hay x/y=2000/2001

25 tháng 11 2018

hình như thứ tự có hơi..... Mình khó hiểu để ???

25 tháng 11 2018

biết bài nào thì giúp mình bài đó nha, 0 phải làm hết đâu