K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
x/9 = y/5 = \(\frac{x-y}{9-5}\) = 16/4 = 4
Do đó :
x/9 = 4 => x = 36
y/5 = 4 => y = 20
Vậy x = 36; y = 20
b) Theo bài ra, ta có : \(\frac{x}{y}=\frac54\) => x/5 = y/4 => x/5 = 2y/8 ; x - 2y = 15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{5}=\frac{2y}{8}=\frac{x-2y}{5-8}=\frac{15}{-3}=-5\)
Do đó :
x/5 = -5 => x = -25
y/4 = -5 => y = -20
Vậy x = -25 ; y = -20
--Tick cho mình nhé--

\(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

Vì \(\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

   \(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo tính chất dãy tỉ số bằng nhau:

\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\Rightarrow\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó: \(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\Rightarrow a=42\\\frac{b}{14}=2\Rightarrow b=28\\\frac{c}{10}=2\Rightarrow c=20\end{cases}}\)

Vậy: a = 42

        b = 28

        c = 20

27 tháng 10 2018

Bài 1: 

a) 

Ta có: \(\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)

Và: \(\frac{b}{7}=\frac{c}{5}\)

=> \(\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}\)

=> \(\frac{b}{14}=\frac{c}{10}\)

Do đó: \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau; ta có: 

\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)\(=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b-5c}{63-98-50}\)\(=\frac{30}{-85}\)\(=-\frac{6}{17}\)

+) Với \(\frac{a}{21}=-\frac{6}{17}\Rightarrow a=-\frac{126}{17}\)

+) Với \(\frac{b}{14}=-\frac{6}{17}\Rightarrow b=-\frac{84}{17}\)

+)Với \(\frac{c}{10}=-\frac{6}{17}\Rightarrow c=-\frac{60}{17}\)

Vậỵ:..........

b)

Ta có: 7a = 9b = 21c

=> 7a/63 = 9b/63 = 21c/63

=> a/9 = b/7 = c/3

Áp dụng tính chất dãy tỉ số bằng nhau; ta có:

a/9 = b/7 = c/3 = (a-b+c) / (9-7+3) = -15/5 = -3

+) a/9 = -3 => a = -27

+) b/7 = -3 => b = -21

+) c/3 = -3 => c = -9 

Vậy:..............

Bài 2: 

a) Theo bài: x:y:z = 5:3:4

=> x/5 = y/3 = z/4

Áp dụng tính chất dãy tiwr số bằng nhau; ta có:

x/5 = y/3 = z/4 = ( x + 2y -z ) / ( 5 + 2.5 - 4 ) = -121 / 11 = -11

+) Với x/5 = -11 => x=-55

+) Với y/3 = -11 => y = -33

+) Với z/4 = -11 => z = -44

Vậy:......

b) _ Tương tự câu a) ở bài 1

c) 

Ta đặt: x/3 = y/12 = z/5 = k          ( \(k\inℤ\))

=> \(\hept{\begin{cases}x=3k\\y=12k\\z=5k\end{cases}}\)

Theo bài: xyz = 22,5

=> 3k.12k.5k = 22,5

=> 180.k3 = 22,5

=> k3 = 1/8 = (1/2)3

=> k = 1/2

Với k = 1/2 => x = 3/2; y = 6; z = 5/2

Vậy:..........

d)

22 tháng 5 2019

#)Trả lời :

Câu 1 :

a) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552

    Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )

b) Gọi ba phần đó là a, b, c

    Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)

    => \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315 

   Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )

Câu 2 :

   \(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)

   \(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)

   Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)

   Áp dụng tính chất dãy tỉ số bằng nhau :

   \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)

\(\Rightarrow x=44;y=48;z=112\)

    #~Will~be~Pens~#

25 tháng 5 2019

1a) Gọi ba phần đó là x, y, z.

Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)

\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)

Vậy 3 phần đó là 138, 184, 230

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!! Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng: 1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z 2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2 3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5 4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D....
Đọc tiếp

GIÚP MÌNH VS!! MÌNH CẦN GẤP!!!!

Câu 1: Biểu thức nào sau đây là đơn thức, chọn câu trả lời đúng:

1. A. (5-x)x2 B. -3xy C. 4x+3y2 D. 5y2-z

2. A. \(\frac{-5}{9}\)x2y B. \(\frac{x}{y}\) C. x+\(\frac{1}{y}\) D. (x+y)z2

3. A. 5-x B. \(\frac{1}{x}-\frac{5}{y}\) C. \(\frac{2}{xy}\) D. -5

4. A. \(\frac{2}{5}\)+x2y B. 9x2(y+z) C. 92yz D. 1-\(\frac{5}{9}\)x3

Câu 2: Biểu thức nào không phải là đơn thức, chọn câu trả lời đúng:

1. A.\(\frac{7}{2}\) B. 2xy3 C. 7+2x2y D. -3

2. A. 2+5xy2 B. \(\frac{3}{4}\)x2y5 C. 3x2y D. (x+2y)z

3. A. 5-x B. xy C. 3x2y D. -35.5

4. A. 13.3 B. (5-9x2)y C.5x2y D. 88

Câu 3: Cho biết phần hệ số, phần biến của đơn thức 2,5x2y, chọn câu trả lời đúng:

A. Phần hệ số: 2,5; phần biến: x2y B. Phần hệ số: 2,5; phần biến: x2

C. Phần hệ số: 2; phần biến:x2y D. Phần hệ số: 2,5; phần biến: y

Câu 4: Tính giá trị của biểu thức 2,5x2y tại x=1 và y=-1

A. -1,5 B. -2,5 C. 1,5 D. 2,5

Câu 5: Tính tích của hai đơn thức \(\frac{1}{4}\)x3y và -2x3y5, rồi tìm bậc cùa đơn thức thu được, chọn câu trả lời đúng:

A. \(\frac{-1}{2}\)x6y6, bậc bằng 12 B. \(\frac{-1}{2}\)x6y6, bậc bằng 6

C. -2x6y6, bậc bằng 12 C. -2x6y6, bậc bằng 6

Câu 6: Thu gọn đơn thức 6x.(-8x2y).(9x3y2z) rồi chỉ ra phần hệ số và bậc của chúng, chọn câu trả lời đúng:

A. Hệ số: 243, bậc bằng 10 B. Hệ số: -243, bậc bằng 10

C. Hệ số: 243, bậc bằng 12 D. Hệ số: -243, bậc bằng 12

2
28 tháng 4 2020

Câu 1:

1)B.\(-3xy\)

2)A.\(\frac{-5}{9}x^2y\) và B.\(\frac{x}{y}\)

3)C.\(\frac{2}{xy}\) và D.\(-5\)

4)C.\(9^2yz\)

Câu 2:

1)C.\(7+2x^2y\)

2)A.\(2+5xy^2\) và D.\(\left(x+2y\right)z\)

3)A.\(5-x\) và D.\(-35.5\)

4)A.\(13.3\) và B.\(\left(5-9x^2\right)y\)

Câu 3:A.Phần hệ số:2,5;phần biến:\(x^2y\)

Câu 4:B.\(-2,5\)

Câu 5:A.\(-\frac{1}{2}x^6y^6\) ,bậc bằng 12

Câu 6:B.Hệ số:-243,bậc bằng 10

Nhớ tick cho mình nha!

27 tháng 4 2020

nhìn có vẻ không rõ nên các bạn ráng giúp mình nha!!!!

24 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ 1 và 2 

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\Rightarrow\frac{x}{8}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{-z}{-15}=\frac{x+\left(-z\right)}{8+\left(-15\right)}=\frac{10}{-7}\)

Do đó

\(\frac{x}{8}=\frac{10}{-7}\Rightarrow x=\frac{80}{-7}\)

\(\frac{y}{12}=\frac{10}{-7}\Rightarrow y=\frac{120}{-7}\)

\(\frac{z}{15}=\frac{10}{-7}\Rightarrow z=\frac{150}{-7}\)

Câu hỏi 1:Tim số có ba chữ số abc biết 1abc chia cho abc dư 3. Trả lời:  = Câu hỏi 2:Số nguyên y thỏa mãn \(y=\frac{y+5}{7-y}=\frac{2}{-5}\)laCâu hỏi 3:Tập hợp các số nguyên n để A = \(n=\frac{44}{2n-3}\) nhận giá trị nguyên là {} (Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")Câu hỏi 4:Số các số nguyên x thỏa mãn \(15-\left|-2x+3\right|.\left|5+4x\right|\) =-19 là Câu hỏi 5:Tìm hai số...
Đọc tiếp

Câu hỏi 1:


Tim số có ba chữ số abc biết 1abc chia cho abc dư 3. 
Trả lời:  = 

Câu hỏi 2:


Số nguyên y thỏa mãn \(y=\frac{y+5}{7-y}=\frac{2}{-5}\)la

Câu hỏi 3:


Tập hợp các số nguyên n để A = \(n=\frac{44}{2n-3}\) nhận giá trị nguyên là {} 
(Nhập các giá trị theo thứ tự tăng dần, cách nhau bởi dấu ";")

Câu hỏi 4:


Số các số nguyên x thỏa mãn \(15-\left|-2x+3\right|.\left|5+4x\right|\) =-19 là 

Câu hỏi 5:


Tìm hai số nguyên dương a ; b biết \(\frac{a}{b}=\frac{10}{25}\) và BCNN(a ; b) = 100. 
Trả lời: (a ; b) = () 
(Nhập các giá trị theo thứ tự,cách nhau bởi dấu ";" )

Câu hỏi 6:


Cặp số nguyên dương (x ; y) thỏa mãn \(\left|\left(x^2+2\right).\left(y+1\right)\right|=9\) là (x ; y)= (                 ) 
(Nhập các giá trị theo thứ tự, cách nhau bởi dấu ";" )

Câu hỏi 7:


Có bao nhiêu phân số bằng phân số \(\frac{-48}{-68}\) mà có tử và mẫu đều là các số nguyên âm có ba chữ số. 
Trả lời: Có  phân số.

Câu hỏi 8:


Cộng cả tử và mẫu của phân số \(\frac{15}{23}\) với cùng một số tự nhiên n rồi rút gọn ta được phân số \(\frac{2}{3}\)
Vậy   n = .

Câu hỏi 9:


A là tập hợp các số tự nhiên có ba chữ số khác nhau không chia hết cho 2 và cũng không chia hết cho 3 được tạo thành từ các chữ số 1 ; 3 ; 6 ; 9. 
Số các phần tử của A là 

Câu hỏi 10:


Tìm các số nguyên dương x ; y biết \(\left|x-2y+1\right|.\left|x+4y+3\right|=20\)
Trả lời:        (x;y)=(                     ) 
(Nhập các giá trị theo thứ tự,cách nhau bởi dấu “;”)

Mong các bạn giải hết cho mình nói kết quả cũng được còn làm thì tốt đừng lo về like mình có nhiều nick cứ làm đúng là được mình cảm ơn nhiều!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3
15 tháng 2 2016

C1:997                             C6:1;2

C2:-13                              C7:50

C3:-4;1;27                         C8:1

C4:0                                 C9:14

C5:20;50                           C10:3;1

15 tháng 1 2016

toán lớp 6 chứ lớp 7 gì

28 tháng 5 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

28 tháng 5 2018

a) ) Ta có:\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\) 

Suy ra: \(\frac{5x}{50}=2\Rightarrow5x=100\Rightarrow x=20\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{2z}{42}=2\Rightarrow2z=84\Rightarrow z=42\)

b) 3x=2y, 7y=5z \(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

Suy ra: \(\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=2\Rightarrow z=42\)

c) \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Rightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\) 

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\Rightarrow\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

Suy ra: \(\frac{2x}{18}=3\Rightarrow2x=54\Rightarrow x=27\)

\(\frac{3y}{36}=3\Rightarrow3y=108\Rightarrow y=36\)

\(\frac{z}{20}=3\Rightarrow z=60\)

8 tháng 5 2017

ai muốn kết bn với tớ thì hãy click cho tớ nhé