K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

a) \(\left(2y-1\right)^{1000}-\left(3+y\right)^{1000}=0\)

\(\Rightarrow\left(2y-1\right)^{1000}=\left(3+y\right)^{1000}\)

\(\Rightarrow2y-1=3+y\)

\(2y-y=3+1\)

\(y=4\)

b) \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)

\(\left(x-\frac{2}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)

\(\Rightarrow x-\frac{2}{9}=\left(\frac{2}{3}\right)^2\)

\(x-\frac{2}{9}=\frac{4}{9}\)

\(x=\frac{2}{3}\)

c) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)

\(\left(\left(2x-1\right)^3\right)^2=\left(\left(2x-1\right)^4\right)^2\)

\(\Rightarrow\left(2x-1\right)^3=\left(2x-1\right)^4\)

\(8x^3-1=16x^4-1\)

\(16x^4-8x^3=0\)

\(8x^3\left(2x-1\right)=0\)

Nếu \(8x^3=0\) thì \(x^3=0\Rightarrow x=0\)

Nếu \(2x-1=0\)thì \(2x=1\Rightarrow x=\frac{1}{2}\)

Vậy x=0 và x=1/2

22 tháng 10 2015

MỌI NGƯỜI ƠI ! CÓ AI CÒN RẢNH RANG GIÚP BÀI TỚ VỚI NHÉ ! HUHU MAI TỚ PHẢI NỘP BÀI RỒI

25 tháng 6 2017

Ta có : |x - 1| + |y + 1| = 0

Mà : |x - 1| \(\ge0\forall x\in R\)

       |y + 1| \(\ge0\forall x\in R\)

Nên : |x - 1| = |y + 1| = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)

25 tháng 6 2017

thanks bn nha!!!!!

a: \(\left|x+\frac{19}{55}\right|\ge0\forall x\)

\(\left|y+\frac{1890}{1975}\right|\ge0\forall y\)

\(\left|z-2004\right|\ge0\forall z\)

Do đó: \(\left|x+\frac{19}{55}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac{19}{55}=0\\ y+\frac{1890}{1975}=0\\ z-2004=0\end{cases}\Rightarrow\begin{cases}x=-\frac{19}{55}\\ y=-\frac{1890}{1975}=-\frac{378}{395}\\ z=2004\end{cases}\)

b: Sửa đề: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

Ta có: \(\left|x+\frac92\right|\ge0\forall x\)

\(\left|y+\frac43\right|>=0\forall y\)

\(\left|z+\frac72\right|\ge0\forall z\)

Do đó: \(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\ge0\forall x,y,z\)

\(\left|x+\frac92\right|+\left|y+\frac43\right|+\left|z+\frac72\right|\le0\)

nên \(\begin{cases}x+\frac92=0\\ y+\frac43=0\\ z+\frac72=0\end{cases}\Rightarrow\begin{cases}x=-\frac92\\ y=-\frac43\\ z=-\frac72\end{cases}\)

c: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac15\right|\ge0\forall y\)

\(\left|x+y+z\right|\ge0\forall x,y,z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac15\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac15=0\\ x+y+z=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac15\\ z=-x-y=\frac34-\frac15=\frac{11}{20}\end{cases}\)

d: \(\left|x+\frac34\right|\ge0\forall x\)

\(\left|y-\frac25\right|\ge0\forall y\)

\(\left|z+\frac12\right|\ge0\forall z\)

Do đó: \(\left|x+\frac34\right|+\left|y-\frac25\right|+\left|z+\frac12\right|\ge0\forall x,y,z\)

Dấu '=' xảy ra khi \(\begin{cases}x+\frac34=0\\ y-\frac25=0\\ z+\frac12=0\end{cases}\Rightarrow\begin{cases}x=-\frac34\\ y=\frac25\\ z=-\frac12\end{cases}\)