\(9x^2+12xy+4y^2=5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2017

Ribi Nkok Ngok Ace Legona Nguyễn Thanh Hằng Nguyễn Huy Tú Hung nguyen Toshiro Kiyoshi

31 tháng 8 2017

Sau khi có câu trả lời mọi người mọi người có thể xóa câu hỏi này :)

2 tháng 8 2017

lên mạng mà xem

2 tháng 8 2017

Kh có bạn ah 

12 tháng 2 2017

A=9x^2+4y^2+54x-36y-12xy+90
A=(3x-2y)^2+18(3x-2y)+81+9
A=[(3x-2y)+9]^2+9
GTNN là 9 khi và chỉ khi (3x-2y)+9=0
->3x=2y-9
->x=(2y-9)/3
Suy ra a=2/3 và b=-3

14 tháng 11 2016


A=9x2 + 4y2 + 54x − 36y − 12xy + 90

⟺A=9x2+4y2+81+54x−36y−12xy+9
⟺A=(3x−2y+9)2+9≥9⟺A=(3x−2y+9)2+9≥9

Dấu "=" xảy ra khi 3x−2y+9=0⟺x=2y / 3−33x−2y+9=0⟺x=2y3−3

Đối chiếu đề bài, ta suy ra a= 2  / 3, b=−3

Và a + b = 2 / 3 + -3 

31 tháng 10 2017

A=x 22x+2

=x2-2x+1+1

=(x2-2x+1)+1

=(x-1)2+1

vì (x-1)2\(\ge0\forall x\)

=>(x-1)2+1\(\ge1\)

vậy A luôn dương với mọi x

B=x2+y2+2x4y+6

=x2+2x+1+y2-4y+4+1

=(x2+2x+1)+(y2-4y+4)+1

=(x+1)2+(y-2)2+1

do (x+1)2\(\ge0\forall x\)

(y-2)2\(\ge0\forall y\)

=>(x+1)2+(y-2)2\(\ge0\)

=>(x+1)2+(y-2)2+1\(\ge1\)

=>B\(\ge1\)

vậy B luôn dương với mọi x;y

C= x2+y2+z2+4x2y4z+10

=x2+4x+4+y2-2y+1+z2-4z+4+1

=(x2+4x+4)+(y2-2y+1)+(z2-4z+4)+1

=(x+2)2+(y-1)2+(z-2)2+1

do (x+2)2\(\ge0\forall x\)

(y-1)2\(\ge0\forall y\)

(\(\)z-2)2\(\ge0\forall z\)

=>(x+2)2+(y-1)2+(z-2)2\(\ge0\)

=>(x+2)2+(y-1)2+(z-2)2+1\(\ge1\)

=>C\(\ge1\)

vậy C luôn dương với mọi x;y;z

2 tháng 11 2017

bài 2: tìm x

a)\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+1+4=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy x=1; y=-2

b)\(5x^2+9y^2-12xy-6x+9=0\)

\(\Leftrightarrow\left(4x^2-12xy+9y^2\right)+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\left(2x-3y\right)^2+\left(x-3\right)^2\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2.3-3.y=0\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

Vậy x=2; y=3

2 tháng 10 2017

Ta có:

\(A=y^2+5+2y\)

\(A=y^2+2y.1+1^2+4\)

\(A=\left(y+1\right)^2+4\)

\(\Rightarrow\left(y+1\right)^2\ge0\forall y\)

\(\Rightarrow\left(y+1\right)^2+4\ge4\forall y\)

Vậy Min của A là 4.

B;C làm tương tự nhé bạn.

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức