Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có :2xy-6=4x-y => 2xy-6-4x+y=0 => 2*(2xy-6-4x+y)=2*0 =>4xy-12-8x+2y=0 => 2x2y-4-8-8x+2y=0 => 2x2y-4-8x+2y=8 =>(2x2y+2y)-(8x+4)=8 =>2y(2x+1)-4(2x+1)=8 => (2y-4)(2x+1)=8 Ta có bảng sau :
2y-4 | 1 | 8 | 2 | 4 | -1 | -8 | -2 | -4 |
2x+1 | 8 | 1 | 4 | 2 | -8 | -1 | -4 | -2 |
y(yϵ\(ℤ\)) | 5/2(loại ) | 6(thỏa mãn) | 3(loại) | 4(loại) | 3/2( loại) | -2(thỏa mãn) | 1( loại) | 0(loại ) |
x(xϵ\(ℤ\)) | 7/2(loại) | 0(thỏa mãn) | 3/2( loại) | 1/2( loại) | -9/2( loại) | -1(thỏa mãn) | -5/2( loại) | -3/2( loại) |
Vậy các cặp nghiệm x,y thỏa mãn là (0;6) và (-1;-2)
2xy + y +2x -2=0
y(2x+1)+(2x+1)-3=0
(2x+1)(y+1)=3
2x+1 và y+1 là Ư(3)=(+_1,+_3)
Lập bảng thì ta tìm ra đc (x,y)=(0,2),(1,0),(-1,-4),(-2,-5)
Giải:
Ta có: \(5x-17y=2xy\)
\(\Rightarrow5x-17y=2\left(2x+3y\right)\)
\(\Rightarrow5x-17y=4x+6y\)
\(\Rightarrow11x=23y\)
\(\Rightarrow\frac{x}{23}=\frac{y}{11}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{23}=\frac{y}{11}=\frac{x-y}{23-11}=\frac{5}{12}\)
\(\Rightarrow x=\frac{115}{12};y=\frac{55}{12}\)
Vậy...
Bạn kiểm tra lại nhé, bài này mk ko chắc lắm đâu, có thể bị sai nhé
XONG RỒI ĐẤY BẠN
a) \(x^2-2x+2xy=3+4y\)
\(x^2-2x+2xy-4y=3\)
\(x\left(x-2\right)+2y\left(x-2\right)=3\)
\(\left(x-2\right)\left(x+2y\right)=3\)
\(\Rightarrow x-2;x+2y\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\)Ta có bảng giá trị:
\(x-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(x+2y\) | \(3\) | \(-3\) | \(1\) | \(-1\) |
\(x\) | \(3\) | \(1\) | \(5\) | \(-1\) |
\(y\) | \(0\) | \(-2\) | \(-2\) | \(0\) |
Vậy, \(\left(x;y\right)\in\left\{\left(3;0\right);\left(1;-2\right);\left(5;-2\right)\left(-1;0\right)\right\}\)
b) \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
Ta có: \(\left|2x-3y\right|\ge0\)
\(\left|5y-7z\right|\ge0\)
\(\left|x^2-y^2-2z^2-45\right|\ge0\)
\(\Rightarrow\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|\ge0\)
Mà đề cho \(\left|2x-3y\right|+\left|5y-7z\right|+\left|x^2-y^2-2z^2-45\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|2x-3y\right|=0\\\left|5y-7z\right|=0\\\left|x^2-y^2-2z^2-45\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x-3y=0\\5y-7z=0\\x^2-y^2-2z^2-45=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}2x=3y\\5y=7z\\x^2-y^2-2z^2=45\end{cases}\Rightarrow\hept{\begin{cases}10x=15y\\15y=21z\\x^2-y^2-2z^2=45\end{cases}}}\)
\(\Rightarrow10x=15y=21z\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}\)và \(x^2-y^2-2z^2=45\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{x^2}{21^2}=\frac{y^2}{14^2}=\frac{z^2}{10^2}=\frac{2z^2}{2\cdot10^2}=\frac{x^2-y^2-2z^2}{21^2-14^2-2\cdot10^2}\)
\(=\frac{45}{441-196-200}=1\)(vì \(x^2-y^2-2z^2=45\))
\(\Rightarrow\hept{\begin{cases}x^2=21^2\\y^2=14^2\\z^2=10^2\end{cases}}\Rightarrow\hept{\begin{cases}x=21\\y=14\\z=10\end{cases}}\)
Vậy, \(\left(x;y;z\right)=\left(21;14;10\right)\)
$x,y$ có điều kiện gì không bạn? Là số nguyên, số tự nhiên,....?