Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do 8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
Ta có: \(25-y^2=8\left(x-2009\right)^2\)
mà\(8\left(x-2009\right)^2\ge0\Rightarrow25-y^2\ge0\left(1\right)\)
\(8\left(x-2009\right)^2⋮8\Rightarrow25-y^2⋮8\left(2\right)\)
từ\(\left(1\right),\left(2\right)\Rightarrow y^2\in\left\{1;9;25\right\}\)
\(+,y^2=1\Rightarrow8\left(x-2009\right)^2=24\Rightarrow\left(x-2009\right)^2=3\left(ktm\right)\)
\(+,y^2=9\Rightarrow8\left(x-2009\right)^2=16\Rightarrow\left(x-2009\right)^2=2\left(ktm\right)\)
\(+,y^2=25\Rightarrow8\left(x-2009\right)^2=0\Rightarrow\left(x-2009\right)^2=0\Rightarrow x-2009=0\Rightarrow x=2009\)
Vậy\(x=2009;y=5\)hoặc\(-5\)
a) Hình tròn tâm O,bán kính 3cm
a) Hình tròn tâm O,bán kính 3cm
a) Hình tròn tâm O,bán kính 3cm
a,Tìm x,y thuộc Z biết : 25-y2=8.(x-2009)2
b,Tìm x,y thuộc N biết : (2008.x+3y+1).(2008x+2008x+y)=225
mh cx có bài thầy giao y hệt. Khi nào thầy chữa mh gửi cho
Ta có 8(x-2009)^2 = 25- y^2
8(x-2009)^2 + y^2 =25 (*)
Vì y^2 \(\ge\) 0 nên (x-2009)^2\(\le\frac{25}{8}\) , suy ra (x-2009)^2 = 0 hoặc (x-2009)^2 =1
Với (x -2009)^2 =1 thay vào (*) ta có y^2 = 17 (loại)
Với (x- 2009)^2= 0 thay vào (*) ta có y^2 =25 suy ra y = 5 (do )
Từ đó tìm được (x=2009; y=5)
đúng cái nhé
25 - y2 = 8(x - 2009)2
<=> 8(x - 2009)2 + y2 = 25
Với |x - 2009| = 0 thì => x = 2009
=> y = (-5; 5)
Với |x - 2009| = 1 thì
=> 8(x - 2009)2 = 8
=> y2 = 25 - 8 = 17 (loại)
Với |x - 2009| \(\ge\)2 thì
=> 8(x - 2009)2 \(\ge\)8.4 = 32 (loại)
Vậy x = 2009, y = (-5; 5)
ta có: 25 - y2 = 8(x - 2009)2
=> 8(x - 2009)2 \(\le25\)
=> \(\left(x-2009\right)^2\le\frac{25}{8}\)
mà (x - 2009)2 là số chính phương
=> (x - 2009)2 = { 0;1 }
- nếu (x - 2009)2 = 0 => x - 2009 = 0 => x = 2009
=> 25 - y2 = 0 => y2 = 25 => y = \(\orbr{\begin{cases}5\\-5\end{cases}}\)
- nếu (x - 2009)2 = 1 => \(\orbr{\begin{cases}x-2009=1\\x-2009=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2010\\x=2008\end{cases}}}\)
=> 25 - y2 = 8 => y2 = 17 ( loại )
vậy ta có cặp số (x;y) là (2009;5) ; (2009;-5) thỏa mãn yêu cầu đề bài
Ta có:
\(25-y^2=8\left(x-2009\right)^2\)
\(\Rightarrow8\left(x-2009\right)^2=25-y^2\)
Vì \(y^2\ge0\Rightarrow\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow\left\{\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009^2\right)=1\end{matrix}\right.\)
Với \(\left(x-2009\right)^2=1\Leftrightarrow y^2=17\Rightarrow y=\sqrt{17}\) (loại)
Với \(\left(x-2009\right)^2=0\Leftrightarrow y^2=25\Leftrightarrow\left\{\begin{matrix}x=2009\\y=5\end{matrix}\right.\)
Vậy: \(\left\{\begin{matrix}x=2009\\y=5\end{matrix}\right.\)
25 - y^2 = 8 * ( x - 2009 )^2
vế phải >= 0 ; => vế trái >=0 <=> 25-y^2 >=0 <=> y thuộc [ -5;5 ]
vì vế phải chia hết cho 2;4 => vế trái chia hết cho 2;4
<=> y=-5; -3; -1; 1; 2; 3.
với y=-1 hoặc y= 1 => x= căn 3 +2009 hoặc x= -căn 3 +2009
với y=-3 hoặc y= 3 => x= căn 2 +2009 hoặc x= -căn 2 +2009
với y=-5 hoặc y=5 => x= 2009