Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tận cùng của cá c số chính phương gồm 1,4,5,6,9
nếu y = 0 thì x = 13
nếu y khác 0 thì 10y + 168 có tận cùng là 8 suy ra không tồn tại x,y thỏa mãn
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Bài 1:
a; \(\dfrac{x}{3}\) = \(\dfrac{4}{y}\)
\(xy\) = 12
12 = 22.3; Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6;12}
Lập bảng ta có:
\(x\) | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
y | -1 | -2 | -3 | -4 | -6 | -12 | 12 | 6 | 4 | 3 | 2 | 1 |
Theo bảng trên ta có các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x\)\(;y\)) =(-12; -1);(-6; -2);(-4; -3);(-2; -6);(-1; 12);(1; 12);(2;6);(3;4);(4;3);(6;2);(12;1)
b; \(\dfrac{x}{y}\) = \(\dfrac{2}{7}\)
\(x\) = \(\dfrac{2}{7}\).y
\(x\) \(\in\)z ⇔ y ⋮ 7
y = 7k;
\(x\) = 2k
Vậy \(\left\{{}\begin{matrix}x=2k\\y=7k;k\in z\end{matrix}\right.\)
Ta có 2x + 1 . 3y = 10x
=> 2x.3y.2 = 10x
=> 3y.2 = 5x
=> 3y.2 = (...5)
=> 3y = (...5) : 2
Vì 5y tận cùng là 5
=> 5y không chia hết cho 2
=> Không tồn tại x;y \(\inℕ\)thỏa mãn
=> \(x;y\in\varnothing\)
b) 10x : 5y = 20y
=> 10x = 4y
=> x = y = 0
c) (2x - 15)5 = (2x - 15)3
(2x - 15)5 - (2x - 15)3 = 0
=> (2x - 15)3[(2x - 15)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(2x-15\right)^3=0\\\left(2x-15\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-15=0\\2x-15=\pm1\end{cases}}\Rightarrow2x-15\in\left\{0;1;-1\right\}\)
=> \(x\in\left\{7,5;8;7\right\}\)
Vì x là số tự nhiên => \(x\in\left\{7;8\right\}\)
Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=8.2=16\\y=12.2=24\\z=15.2=30\end{cases}}\)
Vậy x, y, z lần lượt là 16, 24, 30
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\hept{\begin{cases}\frac{x}{8}=2\Rightarrow x=16\\\frac{y}{12}=2\Rightarrow y=24\\\frac{z}{15}=2\Rightarrow z=30\end{cases}}\)
a) Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x+y-10\right|\ge0\forall x\)
Nên : \(\left|x-2\right|+\left|x+y-10\right|\ge0\forall x\)
Mà đề bài cho \(\left|x-2\right|+\left|x+y-10\right|\le0\)
Nên : \(\hept{\begin{cases}x-2=0\\x+y-10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2+y-10=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=8\end{cases}}}\)
Vậy x = 2 ; y = 8
Ta có : \(\left|x-2\right|\ge0\forall x\)
\(\left|x.y-6\right|\ge0\forall x,y\)
Mà : \(\left|x-2\right|+\left|x.y-6\right|=0\)
Nên : pt \(\Leftrightarrow\hept{\begin{cases}x-2=0\\x.y-6=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x.y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}}\)
A=15-4/3+|x-5|
ở số trừ mẫu càng nhỏ thì giá trị càng lớn, số bị trừ càng lớn thì thương càng nhỏ
ta có |x-5| nhỏ nhất bằng 0 với x=5
3+|x-5| nhỏ nhất bằng 3 với x=5
=> 4/3+|x-5| lớn nhất bằng 4/3 với x=5
15-4/3+|x-5| nhỏ nhất với x=5
15-4/3=41/3
Vậy GTNN của A=41/3 <=> x=5
câu cuối hình như đề sai, nếu ko phải thì cho mk xin lỗi nha y^10.x^10=(x.y)^10 mà 7776 ko phải là lũy thừa bậc thứ 10 của bất kì số nguyên nào cả, mk thử rồi 2^10=1024 < (x.y)^10 < 3^10=59049 giữa hai số nguyên liền kề làm sao mà đc
Bài giải
\(x+2=7+y\) \(\Rightarrow\text{ }x-y=7-2=5\)
\(\frac{x}{3}=\frac{6}{y}=\frac{z}{10}\text{ }\Rightarrow\text{ }\frac{x}{3}=\frac{6}{z}=\frac{y}{10}=\frac{x-y}{3-10}=\frac{5}{-7}\)
( Áp dụng tính chất của dãy tỉ số bằng nhau )
\(\Rightarrow\text{ }x=\frac{5}{-7}\cdot3=\frac{15}{-7}\)
\(y=\frac{5}{-7}\cdot10=\frac{50}{-7}\)
\(z=6\text{ : }\frac{5}{-7}=-\frac{42}{5}\)
x=0 => 100+168=y2 <=> y2=169 <=> y=\(\pm\)13
x>0 thì 10x luôn có tận cùng là 0 với mọi x thuộc N. Khi đó y2=...0+168=...8
Mà không có số chính phương nào có tận cùng là 8 => không có x thoả mãn x>10
Vậy x=0 và y=\(\pm\)13