Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> (z2 + 4z+4 )+(2x2-4x +2 )+(3x2 +6xy +3y2)=0
<=> (z+2)2 +2(x-2)2 +3(x+y)2=0
ba hằng đẳng thức=> ta được: z+2 =0 và x-2=0 và x+y= 0
=> z=-2, x=2 , y= -2
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Rightarrow\left(5x-3y\right)-16z^2-\left(3x-5y\right)^2=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-\left(9x^2-30xy+25y^2\right)=0\)
\(\Rightarrow25x^2-30xy+9y^2-16z^2-9x^2+30xy-25y^2=0\)
\(\Rightarrow25\left(x^2-y^2\right)+9\left(x^2-y^2\right)-16z^2=0\)
\(\Rightarrow34\left(x^2-y^2\right)-16z^2=0\)
a)\(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+2xy+y^2+y^2-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y-1=0\\x+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=-y=-1\end{cases}}\)
Vậy x=-1 y=1
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\y=1\end{cases}\Rightarrow}x=-1;y=1}\)
b) \(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow2.\left(x-1\right)^2+3.\left(x+y\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\) \(\left(x-1\right)^2=0\Rightarrow x-1=0\Rightarrow x=1\)
\(\left(x+y\right)^2=0\Rightarrow x+y=0\Rightarrow y=-x=-1\)
\(\left(z+2\right)^2=0\Rightarrow z+2=0\Rightarrow z=-2\)
A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0
<=>(x-2)2+4y22+(z-3)2
B) giải
(2X)2+ 2×2X×1 +1 >=0 với mọi X ( (2x+1)2 )
=> (2x+1)2+2 >0
Ta có \(x^2-y^2-z^2=0\Rightarrow z^2=x^2-y^2\)
Có \(VT=\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)\(=\left(5x-3y\right)^2-16z^2=\left(5x-3y\right)^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2=9x^2-30xy+25y^2\)
\(=\left(3x\right)^2-2.3x.5y+\left(5y\right)^2=\left(3x-5y\right)^2=VP\left(đpcm\right)\)
a) \(x^2+2y^2+2xy-2y+1=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(y-1\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=0\\y=1\end{cases}\Rightarrow}x=-1}\)
Vậy x=-1 ; y=1
Chia nhỏ ra bạn ơi!
\(a) x² +3y²+2z²-2x+12y+4z+15=0 \)
\(⇔x²-2x+1+3y²+12y+12+2z²+4z+2=0 \)
\(⇔(x²-2x+1) + 3(y²+4y+4) +2(z²+2z+1)=0 \)
\(⇔(x-1)² +3(y+2)²+2(z+1)²=0 \)
\(⇔ x-1=0 \) và \(y+2=0\) và \(z+1=0\)
Vậy: \(x=1;y=-2;z=-1\)
\(5x^2+3y^2+z^2-4x+6xy+4z+6=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(3x^2+6xy+3y^2\right)+\left(z^2+4z+4\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2+3\left(x+y\right)^2+\left(z+2\right)^2=0\)
Vì \(\left\{{}\begin{matrix}2\left(x-1\right)^2\ge0\\3\left(x+y\right)^2\ge0\\\left(z+2\right)^2\ge0\end{matrix}\right.\)\(\forall x;y;z\) Nên \(2\left(x-1\right)^2+3\left(x+y\right)^2+\left(z+2\right)^2\ge0\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)^2=0\\3\left(x+y\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\\z=-2\end{matrix}\right.\)
Vậy \(x=1;y=-1;z=-2\)
bạn ơi bạn lấy 2x2, 3x2 ở đâu vậy