Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{72}{8}=9\)
\(\frac{x}{3}=9=>x=27;\frac{y}{5}=9=>y=45\)
Câu sau tương tự
Chúc bạn học tốt
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
a) 2x+1 . 5y =( 22 . 5)x
=> 2x+1 .5y = 22x .5x
=> 2x+1=22x và 5y= 5x
=>x+1=2x=>x=1
với 5y =5x => y=x
vậy x=y=1
b)15x : 3y =75y
=> (3.5)x :3y = (3.52)y (*)
=> 3x-y .5x = 3y. 52y
=> 3x-y= 3y và 5x=52y
=>x-y= y => x=2y
với 5x= 52y
=> x=2y.
vậy nếu ta chọn y=1 thì x=2
kết luận y=1 x=2
a,
2x+1. 5y=20y
=> 2x+1=20y:5y
=>2x+1=4y
=>2x+1=22y
=>x+1=2y
=> x là các số lẻ và y=x+1/2
nhớ ks cho mik
a) \(\frac{x}{3}\) = \(\frac{y}{5}\) và x + y = 72
=> \(\frac{x+y}{3+5}\)= \(\frac{72}{8}\)= 9
=> \(\frac{x}{3}\)= 9 => x = 9.3 = 27
=> \(\frac{y}{5}\)= 9 => y = 9.5 = 45
Vậy x = 27; y = 45
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)