Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1/1×2 + 1/2×3 + ... + 1/9×10) × x < 2/1×3 + 2/3×5 + ... + 2/9×11
(1 - 1/2 + 1/2 - 1/3 + ... + 1/9 - 1/10) × x < 1 - 1/3 + 1/3 - 1/5 + ... + 1/9 - 1/11
(1 - 1/10) × x < 1 - 1/11
9/10 × x < 10/11
x < 10/11 : 9/10
x < 10/11 × 10/9
x < 100/99
Mà x là số tự nhiên => x = 0 hoặc 1
b) \(\frac{4}{9}x-\frac{1}{2}=\frac{-5}{9}\)
\(\Rightarrow\frac{4}{9}x=\frac{-5}{9}+\frac{1}{2}\)
\(\Rightarrow\frac{4}{9}x=\frac{-1}{18}\)
\(\Rightarrow x=\frac{-1}{18}:\frac{4}{9}\)
\(\Rightarrow x=\frac{-1}{8}\)
Bài 1:
a, \(\frac{1}{-16}-\frac{3}{45}=\frac{-1}{16}-\frac{1}{15}\)
\(=\frac{-15}{240}-\frac{16}{240}\)
\(=\frac{-31}{240}\)
b, \(=\frac{-10}{12}-\frac{-12}{12}\)
\(=\frac{2}{12}=\frac{1}{6}\)
c, \(=\frac{-30}{6}-\frac{1}{6}\)
\(=\frac{-31}{6}\)
Bài 2:
a, \(x=-\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{1}{4}\)
b, \(\frac{1}{2}+x=-\frac{11}{2}\)
\(x=-\frac{11}{2}-\frac{1}{2}\)
\(x=-6\)
Bạn nhớ k đúng và chọn câu trả lời này nhé!!!! Mình giải đúng và chính xác hết ^_^
a) \(\frac{x}{4}=\frac{21}{28}\Rightarrow\frac{x}{4}=\frac{3}{4}\Rightarrow x=3\)
Vậy x = 3
b) \(\frac{2x}{5}=\frac{-24}{10}\Rightarrow\frac{2x}{5}=\frac{-12}{5}\Rightarrow2x=-12\Rightarrow x=-6\)
Vậy x = -6
\(a)\frac{x}{4}=\frac{21}{28}\)
\(\Rightarrow x\cdot28=4\cdot21\)
\(\Rightarrow x\cdot28=84\)
\(\Rightarrow x=3\)
\(b)\frac{2x}{5}=\frac{-24}{10}\)
Rút gọn : \(\frac{2x}{5}=\frac{-12}{5}\)
\(\Rightarrow2x=-12\)
\(\Rightarrow x=(-12)\div2=-6\)
Sửa đề \(\frac{11}{13}\)chứ không phải \(\frac{11}{3}\)
\(\frac{2,75-2,2+\frac{11}{7}+\frac{11}{13}}{0,75-0,6+\frac{3}{7}+\frac{3}{13}}-x-\frac{1}{9}=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)
+) Đặt \(A=\frac{2,75-2,2+\frac{11}{7}+\frac{11}{13}}{0,75-0,6+\frac{3}{7}+\frac{3}{13}}\)
\(A=\frac{\frac{11}{4}-\frac{11}{5}+\frac{11}{7}+\frac{11}{13}}{\frac{3}{4}-\frac{3}{5}+\frac{3}{7}+\frac{3}{13}}\)
\(A=\frac{11\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}{3\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{7}+\frac{1}{13}\right)}\)
\(A=\frac{11}{3}\)(1)
+) Đặt \(B=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}\)
\(B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}\)
\(B=\frac{2}{2}\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}\right)\)
\(B=\frac{2}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)\)
\(B=\frac{2}{2}\left(1-\frac{1}{9}\right)=1\cdot\frac{8}{9}=\frac{8}{9}\)(2)
Từ (1) và (2) => \(A-x-\frac{1}{9}=B\)
=> \(\frac{11}{3}-x-\frac{1}{9}=\frac{8}{9}\)
=> \(\frac{11}{3}-x=1\)
=> \(x=\frac{11}{3}-1=\frac{8}{3}\)
Vậy x = 8/3
a) \(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow A\ge-1\)
Dấu \(=\)xảy ra khi \(2x+\frac{1}{3}=0\Leftrightarrow x=-\frac{1}{6}\).
b) \(\left(\frac{4}{9}x-\frac{2}{15}\right)^6\ge0\Rightarrow B\le3\)
Dấu \(=\)xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\Leftrightarrow x=\frac{3}{10}\).
\(\frac{5}{3}x-\frac{2}{5}x=\frac{19}{10}\)
\(\left(\frac{5}{3}-\frac{2}{5}\right)x=\frac{19}{10}\)
\(\frac{19}{15}x=\frac{19}{10}\)
\(x=\frac{19}{30}\)
\(\frac{5}{3}x-\frac{2}{5}x=\frac{19}{10}\)
(5/3 - 2/5)x = 19/10
19/15x = 19/10
x = 19/30
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
\(x+\frac{1}{3}=\frac{4}{3}\)
\(x=\frac{4}{3}-\frac{1}{3}\)
\(x=\frac{3}{3}=1\)
k mình nhaMinh Hiền
x=\(\frac{4}{3}-\frac{1}{3}=1\)