K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

\(x^3+x^2-4x=4\)

\(\Rightarrow x^3+x^2-4x-4=0\)

\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)

\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\hept{\begin{cases}x+1=0\\x^2-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0-1\\x^2=0+4\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\x^2=4=2^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}}\)

9 tháng 12 2018

cảm ơn bạn rất nhiều

22 tháng 10 2020

1) ( x - 1 )3 - ( x + 3 )( x2 - 3x + 9 ) + 3( x2 - 4 ) = 2

⇔ x3 - 3x2 + 3x - 1 - ( x3 + 27 ) + 3x2 - 12 = 2

⇔ x3 + 3x - 13 - x3 - 27 = 2

⇔ 3x - 40 = 2

⇔ 3x = 42

⇔ x = 14

2) ( x2 - 4x )2 - 8( x2 - 4x ) + 15 = 0

Đặt t = x2 - 4x

pt ⇔ t2 - 8t + 15 = 0

    ⇔ t2 - 3t - 5t + 15 = 0

    ⇔ t( t - 3 ) - 5( t - 3 ) = 0

    ⇔ ( t - 3 )( t - 5 ) = 0

    ⇔ ( x2 - 4x - 3 )( x2 - 4x - 5 ) = 0

    ⇔ \(\orbr{\begin{cases}x^2-4x-3=0\\x^2-4x-5=0\end{cases}}\)

+) x2 - 4x - 3 = 0

⇔ ( x2 - 4x + 4 ) - 7 = 0

⇔ ( x - 2 )2 - ( √7 )2 = 0

⇔ ( x - 2 - √7 )( x - 2 + √7 ) = 0

⇔ \(\orbr{\begin{cases}x-2-\sqrt{7}=0\\x-2+\sqrt{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)

+) x2 - 4x - 5 = 0

⇔ x2 - 5x + x - 5 = 0

⇔ x( x - 5 ) + ( x - 5 ) = 0

⇔ ( x - 5 )( x + 1 ) = 0

⇔ x = 5 hoặc x = -1

Vậy ... 

22 tháng 10 2020

Bài làm

(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2

<=> x3 - 3x2 + 3x - 1 - (x3 + 33) + 3x2 - 12 = 2

<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 - 2 = 0

<=> 3x - 42 = 0

<=> 3x = 42

<=> x = 14

Vậy nghiệm của phương trình là 4.

(x2 - 4x)2 - 8(x2 - 4x) + 15 = 0

Đặt x2 - 4x = t, ta có:

t2 - 8t + 15 = 0

<=> t2 - 3t - 5t + 15  = 0

<=> t(t - 3) - 5(t - 3) = 0

<=> (t - 5)(t - 3) = 0

<=> \(\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}\)

Thay: t = 5 vào x2 - 4x ta được:

x2 - 4x = 5

<=> x2 - 4x - 5 = 0

<=> x2 - 5x + x - 5 = 0

<=> x(x - 5) + (x - 5) = 0

<=> (x + 1)(x - 5) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)

Thay: t = 3 vào x2 - 4x ta được:

x2 - 4x = 3

<=> x2 - 4x - 3 = 0

<=> x2 - 4x + 4 - 7 = 0

<=> (x - 2)2 - 7 = 0

<=> (x - 2)2 = V 7 

<=> x - 2 = + V 7 

<=> \(\orbr{\begin{cases}x-2=-7\\x-2=7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{7}+2\\x=\sqrt{7}+2\end{cases}}}\)

Vậy x = { -1; 5; \(-\sqrt{7}+2;\sqrt{7}+2\)}

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

16 tháng 7 2018

a)  \(x^3-x^2-5x+125\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

b)  \(5x^2-5xy-3x+3y\)

\(=5x\left(x-y\right)-3\left(x-y\right)\)

\(=\left(x-y\right)\left(5x-3\right)\)

c)  \(x^2-2x-4y^2+1\)

\(=\left(x-1\right)^2-4y^2\)

\(=\left(x-2y-1\right)\left(x+2y-1\right)\)

21 tháng 12 2020

a) x(x - 3) + 5x = x2 - 8

=> x2 - 3x + 5x - x2 + 8 = 0

=> 2x + 8 = 0

=> 2x = -8

=> x = -4

b) 3(x + 4) - x2 - 4x = 0

=> 3(x + 4) - x(x + 4) = 0

=> (3 - x)(x + 4) = 0

=> \(\orbr{\begin{cases}3-x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)

Vậy \(x\in\left\{3;-4\right\}\)là giá trị cần tìm

c) 7x3 + 12x2 - 4x = 0

=> x(7x2 + 12x - 4) = 0

=> x(7x2 + 14x - 2x - 4) = 0

=> x[7x(x + 2) - 2(x + 2)] = 0

=> x(x + 2)(7x - 2) = 0

=> x = 0 hoặc x + 2 = 0 hoặc 7x - 2 = 0

=> x = 0 hoặc x = -2 hoặc x = 2/7

Vậy \(x\in\left\{0;-2;\frac{2}{7}\right\}\)là giá trị cần tìm

21 tháng 12 2020

x( x - 3 ) + 5x = x2 - 8

⇔ x2 - 3x + 5x - x2 + 8 = 0

⇔ 2x + 8 = 0

⇔ 2x = -8

⇔ x = -4

3( x + 4 ) - x2 - 4x = 0

⇔ 3( x + 4 ) - x( x + 4 ) = 0

⇔ ( x + 4 )( 3 - x ) = 0

⇔ x = -4 hoặc x = 3

7x3 + 12x2 - 4x = 0

⇔ x( 7x2 + 12x - 4 ) = 0

⇔ x( 7x2 + 14x2 - 2x - 4 ) = 0

⇔ x[ 7x( x + 2 ) - 2( x + 2 ) ] = 0

⇔ x( x + 2 )( 7x - 2 ) = 0

⇔ x = 0 hoặc x = -2 hoặc x=  2/7

12 tháng 7 2019

#)Giải :

Bài 1 :

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)

\(\Leftrightarrow144x^2+216=144x^2-480x+319\)

\(\Leftrightarrow696x=319\)

\(\Leftrightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Leftrightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow x=-1\)

12 tháng 7 2019

a) 9(4x + 3)2 = 16(3x - 5)2

=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0

=> (12x + 9)2 - (12x - 20)2 = 0

=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0

=> 29.(24x - 11) = 0

=> 2x - 11 = 0

=> 2x = 11

=>  x = 11 : 2 = 11/2

b) (x3 - x2)2 - 4x2 + 8x - 4 = 0

=> (x3 - x2)2 - (2x - 2)2 = 0

=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0

=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0

=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0

=> (x2 - 2)(x2 + 2)(x - 1)2 = 0

=> x2 - 2 = 0

hoặc : x2 + 2 = 0

hoặc : (x - 1)2 = 0

=> x2 = 2

 hoặc : x2 = -2 (vl)

hoặc : x - 1 = 0

=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

hoặc : x = 1

Vậy ...

c) x + x4 + x3 + x2 + x + 1 = 0

=> x4(x +1) + x2(x + 1) + (x + 1) = 0

=> (x4 + x2 + 1)(x + 1) = 0

=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)

=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)\(\forall\)x; x2 \(\ge\)\(\forall\)x => x4 + x2 \(\ge\)\(\forall\)x)

=> x = -1

19 tháng 9 2020

a) 

\(-4x\left(-2x+1\right):-4x-\left(x+2\right)=8\) 

\(-2x+1-x-2=8\) 

\(-3x-1=8\) 

\(-3x=9\) 

\(x=-3\) 

b) 

\(-\frac{1}{2}x^2\left(-4x^2+6x-2\right):\left(\frac{-1}{2}x^2\right)+4\left(x^2-2x+1\right)==0\) 

\(-4x^2+6x-2+4x^2-8x+4=0\) 

\(-2x+2=0\) 

\(-2x=-2\) 

\(x=1\)

19 tháng 9 2020

ggaao ko