
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1) ( x - 1 )3 - ( x + 3 )( x2 - 3x + 9 ) + 3( x2 - 4 ) = 2
⇔ x3 - 3x2 + 3x - 1 - ( x3 + 27 ) + 3x2 - 12 = 2
⇔ x3 + 3x - 13 - x3 - 27 = 2
⇔ 3x - 40 = 2
⇔ 3x = 42
⇔ x = 14
2) ( x2 - 4x )2 - 8( x2 - 4x ) + 15 = 0
Đặt t = x2 - 4x
pt ⇔ t2 - 8t + 15 = 0
⇔ t2 - 3t - 5t + 15 = 0
⇔ t( t - 3 ) - 5( t - 3 ) = 0
⇔ ( t - 3 )( t - 5 ) = 0
⇔ ( x2 - 4x - 3 )( x2 - 4x - 5 ) = 0
⇔ \(\orbr{\begin{cases}x^2-4x-3=0\\x^2-4x-5=0\end{cases}}\)
+) x2 - 4x - 3 = 0
⇔ ( x2 - 4x + 4 ) - 7 = 0
⇔ ( x - 2 )2 - ( √7 )2 = 0
⇔ ( x - 2 - √7 )( x - 2 + √7 ) = 0
⇔ \(\orbr{\begin{cases}x-2-\sqrt{7}=0\\x-2+\sqrt{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)
+) x2 - 4x - 5 = 0
⇔ x2 - 5x + x - 5 = 0
⇔ x( x - 5 ) + ( x - 5 ) = 0
⇔ ( x - 5 )( x + 1 ) = 0
⇔ x = 5 hoặc x = -1
Vậy ...
Bài làm
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - (x3 + 33) + 3x2 - 12 = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 - 2 = 0
<=> 3x - 42 = 0
<=> 3x = 42
<=> x = 14
Vậy nghiệm của phương trình là 4.
(x2 - 4x)2 - 8(x2 - 4x) + 15 = 0
Đặt x2 - 4x = t, ta có:
t2 - 8t + 15 = 0
<=> t2 - 3t - 5t + 15 = 0
<=> t(t - 3) - 5(t - 3) = 0
<=> (t - 5)(t - 3) = 0
<=> \(\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}\)
Thay: t = 5 vào x2 - 4x ta được:
x2 - 4x = 5
<=> x2 - 4x - 5 = 0
<=> x2 - 5x + x - 5 = 0
<=> x(x - 5) + (x - 5) = 0
<=> (x + 1)(x - 5) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Thay: t = 3 vào x2 - 4x ta được:
x2 - 4x = 3
<=> x2 - 4x - 3 = 0
<=> x2 - 4x + 4 - 7 = 0
<=> (x - 2)2 - 7 = 0
<=> (x - 2)2 = V 7
<=> x - 2 = + V 7
<=> \(\orbr{\begin{cases}x-2=-7\\x-2=7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{7}+2\\x=\sqrt{7}+2\end{cases}}}\)
Vậy x = { -1; 5; \(-\sqrt{7}+2;\sqrt{7}+2\)}

Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc

a) \(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
b) \(5x^2-5xy-3x+3y\)
\(=5x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(5x-3\right)\)
c) \(x^2-2x-4y^2+1\)
\(=\left(x-1\right)^2-4y^2\)
\(=\left(x-2y-1\right)\left(x+2y-1\right)\)


a) x(x - 3) + 5x = x2 - 8
=> x2 - 3x + 5x - x2 + 8 = 0
=> 2x + 8 = 0
=> 2x = -8
=> x = -4
b) 3(x + 4) - x2 - 4x = 0
=> 3(x + 4) - x(x + 4) = 0
=> (3 - x)(x + 4) = 0
=> \(\orbr{\begin{cases}3-x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
Vậy \(x\in\left\{3;-4\right\}\)là giá trị cần tìm
c) 7x3 + 12x2 - 4x = 0
=> x(7x2 + 12x - 4) = 0
=> x(7x2 + 14x - 2x - 4) = 0
=> x[7x(x + 2) - 2(x + 2)] = 0
=> x(x + 2)(7x - 2) = 0
=> x = 0 hoặc x + 2 = 0 hoặc 7x - 2 = 0
=> x = 0 hoặc x = -2 hoặc x = 2/7
Vậy \(x\in\left\{0;-2;\frac{2}{7}\right\}\)là giá trị cần tìm
x( x - 3 ) + 5x = x2 - 8
⇔ x2 - 3x + 5x - x2 + 8 = 0
⇔ 2x + 8 = 0
⇔ 2x = -8
⇔ x = -4
3( x + 4 ) - x2 - 4x = 0
⇔ 3( x + 4 ) - x( x + 4 ) = 0
⇔ ( x + 4 )( 3 - x ) = 0
⇔ x = -4 hoặc x = 3
7x3 + 12x2 - 4x = 0
⇔ x( 7x2 + 12x - 4 ) = 0
⇔ x( 7x2 + 14x2 - 2x - 4 ) = 0
⇔ x[ 7x( x + 2 ) - 2( x + 2 ) ] = 0
⇔ x( x + 2 )( 7x - 2 ) = 0
⇔ x = 0 hoặc x = -2 hoặc x= 2/7

#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1

a)
\(-4x\left(-2x+1\right):-4x-\left(x+2\right)=8\)
\(-2x+1-x-2=8\)
\(-3x-1=8\)
\(-3x=9\)
\(x=-3\)
b)
\(-\frac{1}{2}x^2\left(-4x^2+6x-2\right):\left(\frac{-1}{2}x^2\right)+4\left(x^2-2x+1\right)==0\)
\(-4x^2+6x-2+4x^2-8x+4=0\)
\(-2x+2=0\)
\(-2x=-2\)
\(x=1\)
\(x^3+x^2-4x=4\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x+1=0\\x^2-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0-1\\x^2=0+4\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x^2=4=2^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=2\end{cases}}}\)
cảm ơn bạn rất nhiều