Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2(x-3)-12+4x=0
=>x2(x-3)+4x-12=0
=>x2(x-3)+4(x-3)=0
=>(x2+4)(x-3)=0
=>x-3=0 (loại x2+4=0 do x2+4 >= 4 > 0 với mọi x)
=>x=3
b)(2x-1)2-(x+3)2=0
=>(2x-1-x-3)(2x-1+x+3)=0
=>(x-4)(3x+2)=0
=>x=4 hoặc x=-2/3
c)2x2-5=0
=>2x2=5=>x2=\(\frac{5}{2}=>\hept{\begin{cases}x=\sqrt{\frac{5}{2}}\\x=-\sqrt{\frac{5}{2}}\end{cases}}\)
a. 3.(x-2)+2.(x-3)=13
x=5
b. (x+1).(2-x)-(3x+5).(x+2)=-4x2+1
x=-9/10
c.x.(5-2x)+2x.(x-1)=13
x=13/3
d. (2x+3)2-(x-1)2=0
x=-2/3
e. x2.(3x-2)-8+12=0
x vô ngiệm
f x2+x=0
x=-1
g. x3-5x=0
x=0
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
a) \(3\left(x-2\right)+2\left(x-3\right)=1\)\(3\)
\(3x-6+2x-6=13\)
\(5x=13+6+6\)
\(5x=25\)
\(x=25\)
c) \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
d) \(\left(2x+3\right)^2-\left(x-1\right)^2=0\)
\(\left(2x+3-x+1\right)\left(2x+3+x-1\right)=0\)
\(\left(x+4\right)\left(3x+2\right)=0\)
\(\orbr{\begin{cases}x+4=0\\3x+2=0\end{cases}}=>\orbr{\begin{cases}x=-4\\x=\frac{-2}{3}\end{cases}}\)
f) \(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+1=0\end{cases}=>\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
g) \(x^3-5x=0\)
\(x^2\left(x-5\right)=0\)
\(=>\orbr{\begin{cases}x^2=0\\x-5=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=5\end{cases}}\) \(\)
\(\)
\(9\left(3x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(9x+3\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(9x+3-2x-3\right)\left(9x+3+2x+3\right)=0\)
\(\Leftrightarrow7x\left(11x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\11x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-6}{11}\end{cases}}\)
\(3\left(2x-5\right)^2-12\left(x+7\right)^2=0\)
\(\Leftrightarrow3\left(4x^2-20x+25\right)-12\left(x^2+14x+49\right)=0\)
\(\Leftrightarrow12x^2-60x+75-12x^2-168x-588=0\)
\(\Leftrightarrow-228x-513=0\)
\(\Leftrightarrow x=\frac{513}{288}=\frac{57}{32}\)
Ukm
It's very hard
l can't do it
Sorry!
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow x^4+2x^3-3x^3-6x^2-x^2-2x+3x+6=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x^2\left(x+2\right)-x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x^2-x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-3\right)-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-3\right)=0\). Làm nốt
b) \(2x^2+2xy+y^2+9=6x-\left|y+3\right|\)
\(\Leftrightarrow2x^2+2xy+y^2+9-6x+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+x^2-6x+9+\left|y+3\right|=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-3\right)^2+\left|y+3\right|=0\)
Do \(\left(x+y\right)^2\ge0;\left(x-3\right)^2\ge0;\left|y+3\right|\ge0\forall x;y\)
\(\Rightarrow\hept{\begin{cases}x+y=0\\x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
c) \(\left(2x^2+x\right)^2-4\left(2x^2+x\right)+3=0\)
\(\Leftrightarrow\left(2x^2+x\right)^2-2.\left(2x^2+x\right).2+4-1=0\)
\(\Leftrightarrow\left(2x^2+x-2\right)^2=1\Leftrightarrow\orbr{\begin{cases}2x^2+x-2=1\\2x^2+x-2=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2+x-3=0\\2x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{3}{2}=0\\x^2+2.x.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2-\frac{25}{16}=0\\\left(x+\frac{1}{4}\right)^2-\frac{9}{16}=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+\frac{1}{4}\right)^2=\frac{25}{16}\\\left(x+\frac{1}{4}\right)^2=\frac{9}{16}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=\pm\frac{5}{4}\\x+\frac{1}{4}=\pm\frac{3}{4}\end{cases}}\)
Từ đó tính đc x
d) \(\left(x^2+3x+2\right)\left(x^2+7x+12\right)=24\)
\(\Leftrightarrow\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)=24\)
\(\Leftrightarrow\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]=24\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)
\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
Đặt \(x^2+5x+5=a\), khi đó pt có dạng:
\(\left(a-1\right)\left(a+1\right)-24=0\Leftrightarrow a^2-1-24=0\)
\(\Leftrightarrow a^2-25=0\Leftrightarrow\left(a-5\right)\left(a+5\right)=0\Leftrightarrow\orbr{\begin{cases}a=5\\a=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x+5=5\\x^2+5x+5=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+5x+10=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{15}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\left(x+5\right)=0\\\left(x+\frac{5}{4}\right)^2=-\frac{15}{4}\left(vn\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)
\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)
\(\Leftrightarrow-5\left(4x+3\right)=0\)
\(\Leftrightarrow4x+3=0\)
\(\Leftrightarrow4x=-3\)
\(\Leftrightarrow x=\frac{-3}{4}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)
h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)
\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)
\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)
\(\Leftrightarrow-9x+2x-3-10x=30\)
\(\Leftrightarrow-17x-3=30\)
\(\Leftrightarrow-17x=33\)
\(\Leftrightarrow x=\frac{-33}{17}\)
Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)
a/
\(\Leftrightarrow x-2x^2+2x^2-3x-4x+6=0\)
\(\Leftrightarrow-6x+6=0\)
\(\Leftrightarrow x=1\)
b/
\(\Leftrightarrow2x^2-4x-2x^2-6x=0\)
\(\Leftrightarrow-10x=0\)
\(\Leftrightarrow x=0\)
c/
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+x-3\right)=0\)
\(\Leftrightarrow3x\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(9y^2+30y+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(3y+5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\3x+5=0\end{matrix}\right.\)
\(\Leftrightarrow x=y=-\frac{5}{3}\)
d/
\(\Leftrightarrow4x^2-4x+1+4x^2+4x+1-2\left(4x^2-2x-2\right)+x=12\)
\(\Leftrightarrow8x^2+x+2-8x^2+4x+4=12\)
\(\Leftrightarrow5x=6\)
\(\Leftrightarrow x=\frac{6}{5}\)
Ở trên có 1 phép cộng còn đâu là trừ hết ạ
x^3 - 2x^2 - 2x - 12 = 0
<=> (x^2 + 4x + 6)(x - 2) = 0
<=> x^2 + 4x + 6 # 0 hoặc x - 2 = 0
<=> x - 2 = 0
<=> x = 2