![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) a) \(x^2=2x\Leftrightarrow x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\) vậy \(x=0;x=2\)
b) \(x^3=x\Leftrightarrow x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\) \(\Leftrightarrow x\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+1=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\) vậy \(x=0;x=-1;x=1\)
\(x^2=2x\Rightarrow x^2-2x=0\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\Rightarrow x=2\end{matrix}\right.\)
\(x^3=x\Rightarrow x^3-x=0\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-1=0\Rightarrow x^2=1\Rightarrow x=\pm1\end{matrix}\right.\)
\(A=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\left(\dfrac{1}{16}-1\right)\left(\dfrac{1}{25}-1\right)...\left(\dfrac{1}{121}-1\right)\)
\(A=\dfrac{-3}{4}.\dfrac{-8}{9}.\dfrac{-15}{16}.\dfrac{-24}{25}...\dfrac{-120}{121}\)
\(A=\dfrac{3.8.15.24....120}{4.9.16.25...121}\)
\(A=\dfrac{1.3.2.4.3.5.4.6....10.12}{2.2.3.3.4.4.5.5....11.11}\)
\(A=\dfrac{1.2.4....10}{2.3.4.5...11}.\dfrac{3.4.5....12}{2.3.4.5....11}\)
\(A=\dfrac{1}{11}.6=\dfrac{6}{11}\)
3) Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{8^{2017}+1}{8^{2018}+1}< 1\)
\(B< \dfrac{8^{2017}+1+8}{8^{2018}+1+8}\)
\(B< \dfrac{8^{2017}+8}{8^{2018}+8}\)
\(B< \dfrac{8\left(8^{2016}+1\right)}{8\left(8^{2017}+1\right)}\)
\(B< \dfrac{8^{2016}+1}{8^{2017}+1}=A\)
\(B< A\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(6.\left(-\frac{1}{3}\right)^2-\frac{5}{4}:0,5+3\frac{1}{2}\)
\(=6.\frac{1}{9}-\frac{5}{4}.2+\frac{7}{2}\)
\(=\frac{2}{3}-\frac{5}{2}+\frac{7}{2}\)
\(=-\frac{11}{6}+\frac{7}{2}\)
\(=\frac{5}{3}\)
\(\frac{2017}{2018}.\frac{15}{17}-\frac{32}{17}.\frac{2017}{2018}=\frac{2017}{2018}.\left(\frac{15}{17}-\frac{32}{17}\right)\)
\(=\frac{2017}{2108}.\left(-1\right)=-\frac{2017}{2018}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^{2017}=\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow x^{2017}=\frac{x^{2017}-2}{3}-\frac{x^{2017}-2}{3}\)
\(\Leftrightarrow\frac{2x^{2017}+2}{3}=0\)
\(\Leftrightarrow2x^{2017}+2=0.3\)
\(\Leftrightarrow2x^{2017}+2=0\)
\(\Leftrightarrow2x^{2017}=0-2\)
\(\Leftrightarrow2x^{2017}=-2\)
\(\Leftrightarrow x^{2017}=-2:2\)
\(\Leftrightarrow x^{2017}=-1\)
\(\Leftrightarrow x=\left(-1\right)^{\frac{1}{2017}}\)
=> x = -1
Lần này cẩn thận hơn rồi nha :v
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat
Em có thể tham khảo tại link này nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\\= (x^3+x^2y-2x^2)-(xy+y^2-2y)+(x+y-2)+2019\\=x^2(x+y-2)-y(x+y-2)+(x+y-2)+2019\\=x^2.0-y.0+0+2019=2019\)
c) +) Với \(x + y + z = 0\) thì \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{(-z)}{y} \cdot \dfrac{(-x)}z \cdot \dfrac{(-y)}x = -1\)
+) Với \(x + y + z \ne 0\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{y+z-x}x = \dfrac{z+x-y}y = \dfrac{x+y-z}z = \dfrac{y+z-x+z+x-y+x+y-z}{x+y+z} = \dfrac{x+y+z}{x+y+z} =1\)
Ta có \(\dfrac{y+z-x}x = 1 \iff y+z-x = x \iff y+z = 2x\)
Tương tự : \(z+x = 2y ; x + y = 2z\)
Kh đó \(P = \dfrac{y+x}{y} \cdot \dfrac{z+y}z \cdot \dfrac{x + z}x = \dfrac{2z}{y} \cdot \dfrac{2x}z \cdot \dfrac{2y}x = 8\)
x2017 = \(\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}=\frac{x^{2017}-2}{3}\)
\(\frac{3.x^{2017}}{3}-\frac{x^{2017}-2}{3}=0\)
\(\frac{3.x^{2017}-x^{2017}+2}{3}=0\)
\(\frac{2.x^{2017}+2}{3}=0\)
\(2.x^{2017}+2=0\)
\(2.x^{2017}=-2\)
\(x^{2017}=-1\)
\(x=-1\)