Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Có (x+2011)^2012 lớn hơn hoặc bằng 0 với mọi x
-Có |y-2012| lớn hơn hoặc bằng 0 với mọi y => |y-2012|^2011 lớn hơn hoặc bằng 0 với mọi y
=> (x+2011)^2012 + |y-2012|^2011 lơn hơn hoặc bằng 0 với mọi x;y
Mà (x+2011)^2012 + |y-2012|^2011 = 0
=> Dấu = xảy ra <=> x+2011=0 ; y-2012=0
=> x=-2011 ; y=2012
k cho tớ nha!
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
Ta có :
\(\frac{x-1}{2012}+\frac{x-2}{2011}+\frac{x-3}{2010}+\frac{x-4}{2009}+\frac{x-2021}{2}=0\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+\left(\frac{x-3}{2010}-1\right)+\left(\frac{x-4}{2009}-1\right)+\left(\frac{x-2021}{2}+4\right)=0\)
\(\Leftrightarrow\)\(\frac{x-2013}{2012}+\frac{x-2013}{2011}+\frac{x-2013}{2010}+\frac{x-2013}{2009}+\frac{x-2013}{2}=0\)
\(\Leftrightarrow\)\(\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2}\ne0\)
Nên \(x-2013=0\)
\(\Rightarrow\)\(x=2013\)
Vậy \(x=2013\)
Chúc bạn học tốt ~
\(\Leftrightarrow\hept{\begin{cases}x=-2011\\x=2012\end{cases}}\)
mà trong một biểu thức ko tồn tại cùng một lúc 2 kết quả
\(\Rightarrow\)ko có giá trị x tm đề bài
|x + 2011| + |x - 2012| = 0
|x + 2011| > 0 và |x - 2012| > 0
=> |x + 2011| = 0 và |x - 2012| = 0
=> x + 2011 = 0 và x - 2012 = 0
=> x = -2011 và x = -2012
=> không có x thỏa mãn
vậy_