Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-7x+5=0\)
\(2x^2-2x-5x+5=0\)
\(2x\left(x-1\right)-5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x-5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=\frac{5}{2}\end{array}\right.\)
\(x\left(2x-5\right)-4x+10=0\)
\(x\left(2x-5\right)-2\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(x-2\right)=0\)
\(\left[\begin{array}{nghiempt}x-2=0\\2x-5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\2x=5\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=2\\x=\frac{5}{2}\end{array}\right.\)
\(\left(x-5\right)\left(x+5\right)-x\left(x-2\right)=15\)
\(x^2-25-x^2+2x=15\)
\(2x=15+25\)
\(2x=40\)
\(x=\frac{40}{2}\)
\(x=20\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\left(2x-3\right)\left(x^2+4\right)=0\)
\(2x-3=0\) (vì \(x^2\ge0\Rightarrow x^2+4\ge4>0\))
\(2x=3\)
\(x=\frac{3}{2}\)
\(x\left(x-1\right)+5x-5=0\)
\(x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+5\right)=0\)
\(\left[\begin{array}{nghiempt}x-1=0\\x+5=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=1\\x=-5\end{array}\right.\)
\(\left(2x-3\right)^2-4x\left(x-1\right)=5\)
\(4x^2-12x+9-4x^2+4x=5\)
\(-8x=5-9\)
\(-8x=-4\)
\(x=\frac{4}{8}\)
\(x=\frac{1}{2}\)
\(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(5x-2x^2+2x^2-2x=13\)
\(3x=13\)
\(x=\frac{13}{3}\)
\(2\left(x+5\right)\left(2x-5\right)+\left(x-1\right)\left(5-2x\right)=0\)
\(\left(2x+10\right)\left(2x-5\right)-\left(x-1\right)\left(2x-5\right)=0\)
\(\left(2x-5\right)\left(2x+10-x+1\right)=0\)
\(\left(2x-5\right)\left(x+11\right)=0\)
\(\left[\begin{array}{nghiempt}2x-5=0\\x+11=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}2x=5\\x=-11\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-11\end{array}\right.\)
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(x\left(3x-5\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\3x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
Vậy \(x\in\left\{0;\frac{5}{3}\right\}\)
a) \(x\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\3x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}}\)
b) \(3x^2-27=0\)
\(\Leftrightarrow3x^2=27\)
\(\Leftrightarrow x^2=9\)
\(\Leftrightarrow x=\pm3\)
c) \(\left(x-5\right)^2=x-5\)
\(\Leftrightarrow x^2-10x+25-x+5=0\)
\(\Leftrightarrow x^2-11x+30=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)
d) \(2\left(x+7\right)-x^2-7x=0\)
\(\Leftrightarrow2x+14-x^2-7x=0\)
\(\Leftrightarrow-x^2-5x+14=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=2\end{cases}}}\)
e)\(7x\left(x-3\right)+2.3x=0\)
\(\Leftrightarrow7x^2-21x+6x=0\)
\(\Leftrightarrow7x^2-15x=0\)
\(\Leftrightarrow x\left(7x-15\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\7x-15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{15}{7}\end{cases}}}\)
#H
Trả lời:
a, \(x^2-9-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy x = 3; x = - 1 là nghiệm của pt.
b, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
c, \(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}}\)
Vậy x = - 5/2; x = 1 là nghiệm của pt.
\(x\left(3x-5\right)-9x+15=0\)
\(\Leftrightarrow x\left(3x-5\right)-3\left(3x-5\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\3x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{5}{3}\end{cases}}\)
\(3x\left(x-5\right)-2\left(5-x\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=5\end{cases}}\)
a)x^2-5=0
x^2=5
x=2.236
b) 3x^3-27x=0
=)x=3
C)5x(x-1)-x+1=0
=)x=1
D)2(x+5)-x^2-5×=0
=)x=2
\(x^2\left(x-5\right)+x-5=0\)
\(\Rightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
\(x^2\left(x-5\right)+x-5=0\)
\(\Leftrightarrow x-5=0\)
hay x=5