![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow x^2-2x+1+y^2+4y+4=0\)
=>(x-1)^2+(y+2)^2=0
=>x=1 và y=-2
b: \(\Leftrightarrow2x^2+2y^2-16x+32+16y+32=0\)
\(\Leftrightarrow2\left(y-4\right)^2+2\left(x+4\right)^2=0\)
=>y=4; x=-4
![](https://rs.olm.vn/images/avt/0.png?1311)
a , \(8x^3-27=\left(2x\right)^3-3^3=\left(2x-3\right)\left(4x^2+6x+9\right)\)
b , \(-x^4y^2-16-8x^2y=-\left[\left(x^2y\right)^2+4.x^2y+4^2\right]=-\left[x^2y+4\right]^2\)
c , \(2xy-x^2-y^2+16=-\left[\left(x^2-2xy+y^2\right)-16\right]=-\left[\left(x-y\right)^2-4^2\right]=-\left[\left(x-y-4\right)\left(x-y+4\right)\right]\)
\(a,8x^3-27=\left(2x\right)^3-3^3=\left(2x-3\right)\left(4x^2+6x+9\right)\)\(b,-x^4y^2-16-8x^2y=-\left(x^4y^2+8x^2y+16\right)=-\left(x^2y+4\right)^2\)\(c,2xy-x^2-y^2+16=16-\left(x^2-2xy+y^2\right)=4^2-\left(x-y\right)^2=\left(4-x+y\right)\left(4+x-y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-5x^2+8x-4\)
\(=x^3-x^2-4x^2+4x+4x-4\)
\(=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\dfrac{8x^2-6x+1}{x^2}\)
= \(\dfrac{8x^2}{x^2}-\dfrac{6x}{x^2}+\dfrac{1}{x^2}\)
= \(1-\dfrac{6}{x}+\dfrac{1}{x^2}\)
đặt t=\(\dfrac{1}{x}\) ta có
1-6y+y2
= (y2-6y+9)-8
= (y-3)2-8
do (y-3)2 ≥ 0 ∀ x
⇔ (y-3)2 -8 ≥ -8
⇔ B ≥ -8
nim B =-8 dấu "=" xảy ra khi
y-3=0 ⇔ y=3 ⇔ \(\dfrac{1}{x}=3\) ⇔ x=\(\dfrac{1}{3}\)
vậy nim B =-8 khi x=\(\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) 49x2+14x+1=0
=>(7x+1)2=0
= > 7x+1=0
=> 7x=-1
=> x=-\(\dfrac{1}{7}\)
x^2-8x+16=0
(x+4)^2=0
x+4=0
x=-4
x2-8x=-16
<=>\(x^2-8x+16=0\)
<=> \(\left(x-4\right)^2=0\)
<=>\(x-4=0\)
<=>\(x=4\)