![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
=>x(4x2-8x+4)=0
x(4x2-4x-4x+4)=0
x[4x(x-4)-4(x-4)]=0
x.4.(x-4)(x-1)=0
=>x=0
x=4
x=1
Nguyễn Việt Quang sai rồi nha bạn. Thay x = 4 vào biểu thức xem có được = VP không?
\(4x^3-8x^2+4x=0\)
\(\Leftrightarrow4x^3-4x^2-4x^2+4x=0\)
\(\Leftrightarrow\left(4x^3-4x^2\right)-\left(4x^2-4x\right)=0\)
\(\Leftrightarrow4x^2\left(x-1\right)-4x\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x^2-4x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\4x^2-4x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\4\left(x^2-x\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\x^2-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=0\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(5\left(x+3\right)-2x\left(x+3\right)=0\)
<=> \(\left(5-2x\right)\left(x+3\right)=0\)
<=> \(\hept{\begin{cases}5-2x=0\\x+3=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
\(4x\left(x-2018\right)-x+2018=0\)
<=> \(4x\left(x-2018\right)-\left(x-2018\right)=0\)
<=> \(\left(4x-1\right)\left(x-2018\right)=0\)
<=> \(\hept{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(x+1-1\right)=0\)
<=> \(\left(x+1\right).x=0\)
<=> \(\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-1\end{cases}}\)
học tốt
a) \(5\left(x+3\right)-2x\left(3+x\right)=0\)
\(5\left(x+3\right)+2x\left(x+3\right)=0\)
\(\left(x+3\right)\left(5+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{-5}{2}\end{cases}}\)
b) \(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
c) \(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x^2+6x-8=0\)
<=> \(2x^2-2x+8x-8=0\)
<=> \(2x\left(x-1\right)+8\left(x-1\right)=0\)
<=> \(\left(2x+8\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+8=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-4\\x=1\end{cases}}\)
\(2x^2-x-1=0\)
<=> \(2x^2-2x+x-1=0\)
<=> \(2x\left(x-1\right)+\left(x-1\right)=0\)
<=> \(\left(2x+1\right)\left(x-1\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
\(4x^2-5x-9=0\)
<=> \(4x^2+4x-9x-9=0\)
<=> \(4x\left(x+1\right)-9\left(x+1\right)=0\)
<=> \(\left(4x-9\right)\left(x+1\right)=0\)
<=> \(\hept{\begin{cases}4x-9=0\\x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{3}{2}\\x=-1\end{cases}}\)
học tốt
\(2x^2+6x-8=0\)
\(< =>2x^2-2x+8x-8=0\)
\(\Leftrightarrow2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x+8\right)\left(x-1\right)=0\)
\(\Leftrightarrow2x+8=0\)hoặc \(x-1=0\)
\(\Leftrightarrow x=-4\)hoặc \(x=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=x^2-4x+2x-8+9,5=x^2-2x+1-9+9,5=\)
\(=\left(x-1\right)^2+0,5>0\forall x\)
![](https://rs.olm.vn/images/avt/0.png?1311)
x2+4x-5=0
<=> x2-5x+x-5=0
<=> x(x-5)+(x-5)=0
<=> (x-5)(x+1)=0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2-4x=-1\)
\(4x^2-4x+1=0\)
\(\left(2x-1\right)^2=0\)
\(2x-1=0\)
\(2x=1\)
\(x=\frac{1}{2}\)
x^2 - 4x - 45 = 0
<=> (x - 9)(x + 5) = 0
<=> x - 9 = 0 hoặc x + 5 = 0
<=> x = 9 hoặc x = -5