![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(4x^2+4x+1=\left(2x+1\right)^2\)
2)\(9x^2-24xy+16y^2=\left(3x-4y\right)^2\)
3)\(-x^2+10x-25=-\left(x-5\right)^2\)
4)\(1+12x+36x^2=\left(1+6x\right)^2\)
5) \(\dfrac{x^2}{4}+2xy+4y^2=\left(\dfrac{x}{2}+2y\right)^2\)
6) \(4x^2+4xy+y^2=\left(2x+y\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ( 4x - 1 ) ( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{4};2\right\}\)
b) 4x2 - 12x = 0
<=> 4x ( x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x\in\left\{0;3\right\}\)
c) ( x - 5 )4 + 25 - x2 = 0
( x - 5 ) 4 + ( 5 - x ) ( 5 + x ) = 0
( x - 5 ) ( 4 + 5 + x ) = 0
( x - 5 ) ( 9 + x ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\9+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=-9\end{cases}}\)
Vậy \(x\in\left\{-9;5\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-4x+4=25\)
\(\Leftrightarrow\left(x-2\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=5\\x-2=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, <=> (x-2)2=25
<=>x-2=5 hoặc x-2=-5
<=>x=7 hoặc x=-3
c,<=>(x2)2-16=0
<=>(x2)2=16
<=>x2=4
<=>x=2 hoặc x=-2
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 3x + \(\frac{4}{x+1}\)=> 3x + \(\frac{4}{x+1}\)
để BT thuộc GTNN thì x+1 thuộc U(4)
=> x+1=1(x >= - 1)
=> x= 0
b, \(\frac{\text{x^2−8x+25}}{x}\)= (x-8)+\(\frac{25}{x}\)
=> (x-8) và 25/x min => x = 5
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(4x^4-101x^2+25=0\)
\(\Leftrightarrow4x^4-100x^2-x^2+25=0\)
\(\Leftrightarrow4x^2\left(x^2-25\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x^2-1\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\left(x-5\right)\left(x+5\right)=0\)
Từ đây cậu suy ra đc tập nghiệm của ptr là : \(S=\left\{\frac{1}{2};-\frac{1}{2};5;-5\right\}\)
b) Tớ chịu :>
c) \(\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left[\left(x^2-1\right)^2-\left(x^4+x^2+1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4-2x^2+1-x^4-x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(-3x^2\right)=0\)
Từ đây thấy rằng tập nghiệm ptr là : \(S=\left\{1;-1;0\right\}\)
Chúc cậu học tốt !
\(x^2-4x-4=25\)
\(\Leftrightarrow x^2-4x+4=33\)
\(\Leftrightarrow\left(x-2\right)^2=33\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=\sqrt{33}\\x-2=-\sqrt{33}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{33}+2\\x=2-\sqrt{33}\end{cases}}\)
\(x^2-4x-4=25\)
\(\Rightarrow x^2-4x-4-25=0\)
\(\Rightarrow x^2-4x-29=0\)
\(\Rightarrow x^2-4x+4-33=0\)
\(\Rightarrow\left(x^2-4x+4\right)-33=0\)
\(\Rightarrow\left(x-2\right)^2=33\)
\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{33}\right)^2=\left(-\sqrt{33}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{33}\\x-2=-\sqrt{33}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{33}\\x=2-\sqrt{33}\end{cases}}}\)
Vậy \(x\in\left\{2+\sqrt{33};2-\sqrt{33}\right\}\)