Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
a) 15x2-3x=0
=>3x(5x-1)=0
=>2 TH
=>*3x=0 *5x-1=0
=>x=0 =>5x=1=>x=1/5
vậy x=0 hoặc x=1/5
b) (3x-2) (x+3)+ (x2-9)=0
=>(3x-2)(x+3)+(x-3)(x+3)=0
=>(x+3).(3x-2+x-3)=0
=>(x+3).(4x-5)=0
=> 2 TH
*x+3=0=>x=0-3=>x=-3
*4x-5=0=>4x=5=>x=5/4
vậy x=-3 hoặc x=5/4
c) (x-1)3- (x+1) (2-3x)=-3
\(\Rightarrow\left(x-1\right)^3-\left(x+1\right)\left(2-3x\right)+3=0\)
\(\Rightarrow\left(x^3-3x^2+3x-1\right)-\left(2x-3x^2+2-3x\right)+3=0\)
\(\Rightarrow x^3-3x^2+3x-1-2x+3x^2-2+3x+3=0\)
\(\Rightarrow x^3-3x^2+3x^2+3x-2x+3x-1-2+3=0\)
\(\Rightarrow x^3+4x=0\)
\(\Rightarrow x\left(x^2+4\right)=0\)
=> 2 TH
*x=0
*x^2+4=0
vì: x^2>0
do đó:x^2+4>0
=> x^2+4 ko có gt nào x t/m y/cầu đề bài
vậy x=0
Sửa: a)\(3x^2-12=0\)
\(\Rightarrow3x^2=12\)
\(\Rightarrow x^2=\frac{12}{3}=4\)
\(\Rightarrow x=\sqrt{4}=2\)
Vậy: x=2
b)\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+5=0\\2-x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
Vậy: \(x=-5;2\)
c)\(\Rightarrow2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-1=0\\2x+5=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-\frac{5}{2}\end{array}\right.\)
Vậy: \(x=1;-\frac{5}{2}\)
e, x(x - 2) + x - 2 = 0
=> (x-1)(x-2) = 0
=> x - 1 = 0 hoặc x - 2 = 0
=> x = 1 hoặc x = 2
vậy_
b, x2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
2x2 - 5x + 3 = 0
=> 2.x.x - 5.x = -3
=> x(2x - 5) = -3
đoạn này lập bảng
d) 4x2 - 9x + 5 = 0
=> 4.x.x - 9.x = -5
=> x(4x - 9) = -5
đến đây cx lập bảng
a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1
a, 15x3 - 15x = 0
15x(x2-1)=0
15x=0 hoặc x2-1=0 (tự tính nhoa)
b,3x2-6x+3=0
3(x2-2x+1)=0
x2 -2x+1=0:3=3
x2-2x=3-1=2
x(x-2)=0
x=0 hoặc x-2=0 (tự tính nhoa)
Bài làm
a) 15x3-15x=0
<=> 15x( x2 - 1 ) = 0
<=> \(\orbr{\begin{cases}15x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy x = { 0; + 1 }
b) 3x2 - 6x + 3 = 0
<=> 3( x2 - 2x + 1 ) = 0
<=> x2 - 2x + 1 = 0
<=> ( x - 1 )2 = 0
<=> x - 1 = 0
<=> x = 1
Vậy x = 1
c) 5(x - 1) - 3x(1 - x) = 0
<=> 5(x - 1) + 3x(x - 1) = 0
<=> (5 + 3x)(x - 1) = 0
<=> \(\orbr{\begin{cases}5+3x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=1\end{cases}}}\)
Vậy x = { -5/3; 1 }
e) -7(x + 2) = 2x(x + 2)
<=> -7(x + 2 ) - 2x( x + 2 ) = 0
<=> (x + 2)(-7 - 2x) = 0
<=> \(\orbr{\begin{cases}x+2=0\\-7-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{7}{2}\end{cases}}}\)
Vậy x = { -2; x = -7/2 }
f)(2x - 3)(3x + 5) = (x - 1)(3x + 5)
<=> (2x - 3)(3x + 5) - (x - 1)(3x + 5) = 0
<=> (3x + 5)(2x - 3 - x + 1) = 0
<=> (3x + 5)(x - 2) = 0
<=> \(\orbr{\begin{cases}3x+5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{3}\\x=2\end{cases}}}\)
Vậy x = { -5/3; 2 }
1/ x² - 5x + 6 = 0
⇔ x² - 2x - 3x + 6 = 0
⇔ x(x - 2) - 3(x - 2) = 0
⇔ (x - 2)(x - 3) = 0
⇒S = {2 ; 3}.
1) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
2) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)
3) \(x^2+4x+3=0\)
\(\Leftrightarrow x^2+x+3x+3=0\)
\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
4) \(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2+2x-5x-5=0\)
\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)
a) \(3x^3-12x=0\)
=> \(3x\left(x^2-4\right)=0\)
=> \(\orbr{\begin{cases}3x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
=> \(x^2\left(x-3\right)+\left(-4x+12\right)=0\)
=> \(x^2\left(x-3\right)-4x+12=0\)
=> \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
=> \(\left(x-3\right)\left(x^2-4\right)=0\Rightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
=> \(\left[3x-1-\left(2x-3\right)\right]\left(3x-1+2x-3\right)=0\)
=> \(\left(3x-1-2x+3\right)\left(3x-1+2x-3\right)=0\)
=> \(\left(x+2\right)\left(5x-4\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{4}{5}\end{cases}}\)
d) \(x^2-4x-21=0\)
=> \(x^2+3x-7x-21=0\)
=> \(x\left(x+3\right)-7\left(x+3\right)=0\)
=> (x + 3)(x - 7) = 0 => x = -3 hoặc x = 7
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (x + 1)(3x - 10) = 0
=> x = -1 hoặc x = 10/3
a) \(3x^3-12x=0\)
\(\Leftrightarrow3x\left(x^2-4\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow x\in\left\{-2;0;2\right\}\)
b) \(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{-2;2;3\right\}\)
c) \(\left(3x-1\right)^2-\left(2x-3\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(5x-4\right)=0\)
\(\Leftrightarrow x\in\left\{-2;\frac{4}{5}\right\}\)
Ta có : 3x3 - 12x = 0
=> 3x(x2 - 4) = 0
=> x(x - 2)(x + 2) = 0
=> \(x\in\left\{0;2;-2\right\}\)
b) x2(x - 3) + 12 - 4x = 0
=> x2(x - 3) - 4(x - 3) = 0
=> (x2 - 4)(x - 3) = 0
=> \(\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=4\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}\)
Vậy \(x\in\left\{-2;2;3\right\}\)
c) (3x - 1)2 - (2x - 3)2 = 0
=> (3x - 1 - 2x + 3)(3x - 1 + 2x - 3) = 0
=> (x + 2)(5x - 4) = 0
=> \(\orbr{\begin{cases}x+2=0\\5x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=0,8\end{cases}}\)
Vậy \(x\in\left\{-2;0,8\right\}\)
d) x2 - 4x - 21 = 0
=> x2 - 7x + 3x - 21 = 0
=> x(x - 7) + 3(x - 7) = 0
=> (x + 3)(x - 7) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-7=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=7\end{cases}}\)
Vậy \(x\in\left\{-3;7\right\}\)
e) 3x2 - 7x - 10 = 0
=> 3x2 + 3x - 10x - 10 = 0
=> 3x(x + 1) - 10(x + 1) = 0
=> (3x - 10)(x + 1) = 0
=> \(\orbr{\begin{cases}3x-10=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{10}{3}\\x=-1\end{cases}}\)
Vậy \(x\in\left\{\frac{10}{3};-1\right\}\)
\(x^2-3x+2=0\)
\(x^2-2x-x+2=0\)
\(x\left(x-2\right)-\left(x-2\right)=0\)
\(\left(x-2\right)\left(x-1\right)=0\)
=>\(x-2=0\)hoặc \(x-1=0\)
Với \(x-2=0\)=> \(x=2\)
Với \(x-1=0\)=> \(x=1\)
Vậy x=2 ; x=1
x2−3x+2=0
x2−2x−x+2=0
x(x−2)−(x−2)=0
(x−2)(x−1)=0
=>x−2=0hoặc x−1=0
Với x−2=0=> x=2
Với x−1=0=> x=1
Vậy x=2 ; x=1