K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(\left(x+1\right)\left(x^2+1-x\right)-x\left(x^2-5\right)=71\)

\(x^3+x-x^2+x^2+1-x-\left(x^3-5x\right)=71\)

\(x^3+x-x^2+x^2+1-x-x^3+5x=71\)

\(5x+1=71\)

\(5x=70\)

\(x=70:5\)

x=14

28 tháng 7 2017

(x+1)(x+ 1 - x) - x(x- 5) = 71

\(\left(x+1\right)\left(x^2-x1+1\right)-x^3+5x=71\)

\(x^3+1^3-x^3+5x=71\)

\(1+5x=71\)

\(5x=71-1=70\)

\(x=70:5=14\)

Vậy x = 14

25 tháng 7 2017

\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)

\(\Leftrightarrow x^3+1-x^3+5x=71\)

\(\Leftrightarrow5x=71-1\)

\(\Leftrightarrow5x=70\)

\(\Leftrightarrow x=70:5=14\)

\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)

\(\Leftrightarrow20x^2+14x=0\)

\(\Leftrightarrow x\left(20x+14\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)

25 tháng 7 2017

a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71

          <=>x^3 +1 -x^3 +5x=71

         <=>5x=70

         <=>x=14

b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0

        <=>[ (2x-3)^3  +27)]  -  [ 8x(x-1)^2  -4x(4x+1)]=0

       <=> (2x-3+3)[ (2x-3)^2 - (2x-3).3  +3^2]   - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0

       <=>2x( 4.x^2 - 12x +9 - 6x +9 +9)   -  2x( 4.x^2 -8x+4 -8x -2)=0

       <=>2x(4.x^2  -18x +27)  -  2x(4.x^2 -16x +2)=0

      <=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0

     <=>2x(25-2x)=0

<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2

27 tháng 9 2020

(x + 2)2 - (x - 1)(x + 1)  = 13

=> (x2 + 2.x.2 + 22 )- (x2 - 1) = 13   ( dùng hẳng đẳng thức số 1 và số 3)

=> x2 + 4x + 4 - x2 + 1 = 13

=> (x2 - x2) + 4x + 4 + 1 = 13

=> 4x + 4 + 1 = 13

=> 4x + 5 = 13

=> 4x = 8

=> x = 2

Vậy x = 2

(x + 1)3 + x(x - 1) = x3 + 4x2

=> x3 + 3.x2.1 + 3.x.12 + 13 + x2 - x - x3 - 4x2 = 0

=> x+ 3x2 + 3x + 1 + x2 - x - x3 - 4x2 = 0

=> (x3 - x3) + (3x2 + x2 - 4x2) + (3x - x) + 1 = 0

=> 2x + 1 = 0 => 2x = -1 => x = -1/2

(x + 1)(x + 2) - (x + 3)2 = 24

=> x(x + 2) + 1(x + 2) - (x2 + 2.x.3 + 32) = 24

=> x2 + 2x + x + 2 - (x2 + 6x + 9) = 24

=> x2 + 2x + x + 2 - x2 - 6x - 9 = 24

=> (x2 - x2) + (2x + x - 6x) + (2 - 9) = 24

=> -3x - 7 = 24

=> -3x = 31

=> x = -31/3

(x - 1)(x2 + x + 1) + 2x = x3 + 5

Dựa vào hằng đẳng thức : (A - B)(A2 + AB + B2) = A3 - B3

=> (x - 1)(x2 + x.1 + 12) = x3 - 13  = x3 - 1

=> x3 - 1 + 2x - x3 - 5 = 0

=> (x3 - x3) - 1 + 2x - 5 = 0

=> -1 + 2x - 5 = 0

=> -1 + 2x = 5

=> 2x = 6

=> x = 3

30 tháng 9 2020

\(\left(x+2\right)^2-\left(x-1\right)\left(x+1\right)=13\)

\(\left(x^2+4x+4\right)-\left(x^2-1\right)=13\)

\(x^2+4x+4-x^2+1=13\)

\(4x+5=13\)

\(4x=8\)

\(x=2\)

b,\(\left(x+1\right)^3+x\left(x-1\right)=x^3+4x^2\)

\(x^3+3x^2+3x+1+x^2-x-x^3-4x^2=0\)

\(2x+1=0\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

21 tháng 9 2020

P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?

1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)

=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)

=> \(4x^2-28x+49-4x+12=5\)

=> \(4x^2-32x+61=5\)

=> \(4x^2-32x+61-5=0\)

=> \(4x^2-32x+56=0\)

=> \(4\left(x^2-8x+14\right)=0\)

=> \(x^2-8x+14=0\)

=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)

4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)

=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)

=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)

=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)

=> 7 = 7(đúng)

5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)

=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1

=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1

=> 2x + 41 = 1

=> 2x = -40

=> x = -20

14 tháng 8 2020

a) 16x^2 - (4x - 5)^2 = 15

<=> 16x^2 - 16x^2 + 40x - 25 = 15

<=> 40x = 40

<=> x = 1

b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49

<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49

<=> 12x + 13 = 49

<=> 12x = 36

<=> x = 3

c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18

<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18

<=> 2 - 4x = 18

<=> -4x = 16

<=> x = -4

d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0

<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0

<=> 12x - 5 = 0

<=> 12x = 5

<=> x = 5/12

e) (x - 5)^2 - x(x - 4) = 9

<=> x^2 - 10x + 25 - x^2 + 4x = 9

<=> -6x + 25 = 9

<=> -6x = 9 - 25

<=> -6x = -16

<=> x = -16/-6 = 8/3

f) (x - 5)^2 + (x - 4)(1 - x) = 0

<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0

<=> -5x + 21 = 0

<=> -5x = -21

<=> x = 21/5

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

3 tháng 11 2019

chiu bai nay luon

26 tháng 6 2016

\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow x^3-x^3-25x=8+3\)

\(\Leftrightarrow x=\frac{11}{-25}\)

Vậy x có nghiệm là \(\frac{-11}{25}.\)

\(\)