\(-\sqrt{x+1}\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

ĐKXĐ: \(x\ge-1\)

\(\Leftrightarrow6-\sqrt{x+1}-x-1=0\\ \Leftrightarrow5-x=\sqrt{x+1}\\ \Leftrightarrow25-10x+x^2=x+1\left(x\le5\right)\\ \Leftrightarrow x^2-11x+24=0\\ \Leftrightarrow\left(x^2-3x\right)-\left(8x-24\right)=0\\ \Leftrightarrow x\left(x-3\right)-8\left(x-3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=8\left(ktm\right)\end{matrix}\right.\)

Vậy \(x=3\)

2 tháng 8 2017

+)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)= 2

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\sqrt{\left(x-1+1\right)^2}+\sqrt{\left(x-1-1\right)^2}=2\)

\(\sqrt{x^2}+\sqrt{\left(x-2\right)^2}=2\)

\(x+x-2=2\)

\(2x=4\)

\(x=2\)

+) Hình như sai đâu bài chỗ \(\sqrt{x+3+4\sqrt{x+1}}\)

\(\)

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

13 tháng 6 2018

\(N=6\sqrt{x}-x-1=8-\left(x-6\sqrt{x}+9\right)=8-\left(\sqrt{x}-3\right)^2\le8\)

Dấu "=" xảy ra <=> \(\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)

Vậy Max(N)=8

\(P=\frac{1}{x-\sqrt{x}+1}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

Vậy Max(P)=4/3

13 tháng 6 2018

\(\sqrt{x-1}\ge0,\forall x\inℝ\Rightarrow\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Max (M)=\(\sqrt{3}\)\(\Leftrightarrow x=1\)

19 tháng 7 2017

\(\sqrt{28-6\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-1\right)^2}\)

\(=3\sqrt{3}-1\)

\(\sqrt{6-\sqrt{20}}\)

\(=\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}-1\)

\(\sqrt{2x+3+2\sqrt{\left(x+1\right)\left(x+2\right)}}\)

\(=\sqrt{\left(\sqrt{x+2}+\sqrt{x+1}\right)^2}\)

\(=\sqrt{x+2}+\sqrt{x+1}\)

\(\sqrt{2x+2-2\sqrt{x^2+2x-3}}\)

\(=\sqrt{\left(x-1\right)-2\sqrt{\left(x-1\right)\left(x+3\right)}+\left(x+3\right)}\)

\(=\sqrt{\left(\sqrt{x+3}-\sqrt{x-1}\right)^2}\)

\(=\left|\sqrt{x+3}-\sqrt{x-1}\right|\)

\(\sqrt{21-6\sqrt{6}}+\sqrt{21+6\sqrt{6}}\)

\(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)

\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}\)

\(=6\sqrt{2}\)

19 tháng 7 2017

\(M=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)\left(1-\dfrac{3-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right]\)\(\left[\dfrac{\left(\sqrt{x}+1\right)-\left(3-\sqrt{x}\right)}{\sqrt{x}+1}\right]\)

\(=\left[\dfrac{\left(x+\sqrt{x}+1\right)-\left(x-\sqrt{x}+1\right)}{\sqrt{x}}\right]\times\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}\times2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)

17 tháng 7 2018

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\sqrt{x}+1}\)

    \(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}-1\right)-\left(6\sqrt{x}-4\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

    \(=\frac{x+1+3\sqrt{x}-3-\left(6x-10\sqrt{x}+4\right)}{x-1}\)

      \(=\frac{x+1+3\sqrt{x}-3-6x+10\sqrt{x}-4}{x-1}=\frac{-5x+13x-6}{x-1}\)

b) \(P< \frac{1}{2}\Leftrightarrow\frac{-5x+13x-6}{x-1}< \frac{1}{2}\Leftrightarrow2\left(-5x+13x-6\right)< x-1\)

                                                                 \(\Leftrightarrow-10x+26x-12< x-1\)

                                                                  \(\Leftrightarrow15x< 11\Leftrightarrow x< \frac{11}{15}\)

Vậy để P < 1/2 khi x < 11/15

P/s: Không biết đúng hay sai, mong các anh chị chiếu cố

7 tháng 5 2018

a)\(\sqrt{4x}< =10\)

<=> 4x       <= 100                   

<=>  x     <= 25

b) \(\sqrt{9x}>=3\)

<=> 9x   >= 9

<=> x  >= 1

c) \(\sqrt{4x^2+4x+1}=6\)

<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)

<=>\(\sqrt{\left(2x+1\right)^2}=6\)

<=>\(|2x+1|=6\)

<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)

<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)

d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)

<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)

<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)

<=>\(\sqrt{x-1}=6\)

<=> x - 1       =     36

<=> x           =    37

f) \(\sqrt{2x+1}=\sqrt{x-1}\)

<=> 2x + 1         =   x -1

<=> 2x - x            = -1 -1

<=>  x                 = -2

g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

<=>x2 -x  -1               = x -1

<=> x2 -x-x-1+1           = 0

<=> x2  - 2x  + 0           = 0

<=> x(x-2)                 = 0

<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

8 tháng 5 2018

thanks bạn đã giúp mình 

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

16 tháng 9 2018

Đặt các biểu thức ở câu a,b,c lần lượt là A,B,C

a)  A= \(\sqrt{3}-\sqrt{x-1}\le\sqrt{3}\) ( do \(\sqrt{x-1}\ge0\))    => Max A=\(\sqrt{3}\) khi và chỉ khi x=1

b) B= -( \(x-6\sqrt{x}+1\))  (=) B= - \(\left(\sqrt{x-3}\right)^2\)+8 \(\le8\) => Max B=8  khi và chỉ khi x=3

c) C= \(\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\) Do mẫu \(\ge\frac{3}{4}\)=> Max C= \(\frac{4}{3}\) khi và chỉ khi x=\(\frac{1}{4}\)