K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

\(\Leftrightarrow x+1=0\text{ (do }\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\text{)}\)

\(\Leftrightarrow x=-1\)

8 tháng 11 2023

ko biết

 

2 tháng 8 2016

ĐKXĐ: \(x\ne-1\) , \(x\ne2\)\(x\ne-2\)

\(\frac{2}{x+1}-\frac{1}{x+2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)

\(\Rightarrow2\left(x+2\right)\left(x-2\right)-\left(x+1\right)\left(x-2\right)-\left(3x-11\right)\left(x+2\right)=0\)

\(\Rightarrow2\left(x^2-4\right)-\left(x^2-x-2\right)-\left(3x^2-5x-22\right)=0\)

\(\Rightarrow2x^2-8-x^2+x+2-3x^2+5x+22=0\)

\(\Rightarrow-2x^2+6x+16=0\)

\(\Rightarrow-x^2+3x+8=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{41}}{2}\\x=\frac{3-\sqrt{41}}{2}\end{cases}}\)

30 tháng 6 2020

3x+5<14

<=>3x<9

<=>x<3

vậy S=(x\(\in\)R/x<3)

26 tháng 4 2018

heoheo lần sau bạn đánh = kí hiệu đi :(((

a/ \(\dfrac{x}{3}+\dfrac{2x-1}{6}=\dfrac{1}{2}\)

\(\Leftrightarrow2x+2x-1=3\)

<=> 4x = 4 <=> x = 1

Vậy x = 1

b/ \(\dfrac{3x+1}{2}+\dfrac{x-1}{3}=\dfrac{x-9}{6}\)

\(\Leftrightarrow3\left(3x+1\right)+2\left(x-1\right)=x-9\)

\(\Leftrightarrow9x+3+2x-2=x-9\)

\(\Leftrightarrow10x=-10\Leftrightarrow x=-1\)

Vậy pt có nghiệm x = -1

c/ \(\dfrac{x-1}{x-2}=\dfrac{x+3}{x+2}\) ĐKXĐ: \(x\ne\pm2\)

<=> \(\left(x-1\right)\left(x+2\right)=\left(x+3\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+2x-x-2=x^2-2x+3x-6\)

\(\Leftrightarrow0x=-4\left(voly\right)\)

Vậy pt vô nghiệm

d/ \(\dfrac{3x-1}{3x+1}+\dfrac{x-3}{x+3}=2\) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne-3\\x\ne-\dfrac{1}{3}\end{matrix}\right.\)

pt <=> \(\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}+\dfrac{\left(x-3\right)\left(3x+1\right)}{\left(3x+1\right)\left(x+3\right)}=\dfrac{2\left(3x+1\right)\left(x+3\right)}{\left(3x+1\right)\left(x+3\right)}\)

=> (3x-1)(x+3) + (x-3)(3x+1) = 2(3x+1)(x+3)

\(\Leftrightarrow3x^2+8x-3+3x^2-8x-3=6x^2+20x+6\)

\(\Leftrightarrow-20x=12\Leftrightarrow x=-\dfrac{3}{5}\left(tm\right)\)

Vậy pt có nghiệm x=....

e/ như ý d

26 tháng 4 2018

Mơn bn nhe ^^ tại mjk chưa bt ạk

c: \(\dfrac{3x+5}{x^2-5x}+\dfrac{25-x}{25-5x}\)

\(=\dfrac{3x+5}{x\left(x-5\right)}+\dfrac{x-25}{5\left(x-5\right)}\)

\(=\dfrac{15x+25+x^2-25x}{5x\left(x-5\right)}=\dfrac{x^2-10x+25}{5x\left(x-5\right)}=\dfrac{x-5}{5x}\)

e: \(\dfrac{4x^2-3x+17}{x^3-1}+\dfrac{2x-1}{x^2+x+1}+\dfrac{6}{1-x}\)

\(=\dfrac{4x^2-3x+17+\left(2x-1\right)\left(x-1\right)-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{-2x^2-9x+11+2x^2-3x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-12}{x^2+x+1}\)

 

23 tháng 7 2021

a) \(x^2-\frac{1}{49}=0\)

<=> \(\left(x-\frac{1}{7}\right)\left(x+\frac{1}{7}\right)=0\)

<=> \(\orbr{\begin{cases}x-\frac{1}{7}=0\\x+\frac{1}{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{7}\\x=-\frac{1}{7}\end{cases}}\)

Vậy x = \(\pm\frac{1}{7}\)

b) \(64-\frac{1}{4}x^2=0\)

<=> \(\left(8-\frac{1}{2}x\right)\left(8+\frac{1}{2}x\right)=0\)

<=> \(\orbr{\begin{cases}8-\frac{1}{2}x=0\\8+\frac{1}{2}x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=16\\x=-16\end{cases}}\)

Vậy \(x=\pm16\)

c) 9x2 + 12x + 4 = 0

<=> (3x + 2)2 = 0

<=> 3x + 2 = 0 

<=> x = -2/3

Vậy x = -2/3

e) \(x^2+\frac{1}{4}=x\) 

<=> \(x^2-x+\frac{1}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=0\)

<=> \(x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

23 tháng 7 2021

d, sửa đề : \(x^2+4=4x\Leftrightarrow x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

i, \(4-\frac{12}{x}+\frac{9}{x^2}=0\)ĐK : \(x\ne0\)

Vì \(x\ne0\)Nhân 2 vế với \(x^2\)phương trình có dạng 

\(4x^2-12x+9=0\Leftrightarrow\left(2x-3\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

6 tháng 12 2018

\(S=\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+....+\frac{1}{\left(x+99\right).\left(x+100\right)}\)

\(S=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}\)

\(S=\frac{1}{x}-\frac{1}{x+100}=\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{x^2+100x}\)