Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
a, `4x^2-24x+36=(x-3)^3`
`<=>4(x^2-6x+9)-(x-3)^3=0`
`<=>4(x-3)^2-(x-3)^3=0`
`<=>(x-3)^2.(4-x+3)=0`
`<=>(x-3)^2.(7-x)=0`
`<=>x-3=0` hoặc `7-x=0`
`<=>x=3` hoặc `x=7`
b, `(8x^3-7x^2):x^2=3x+\sqrt{\frac{9}{25}}`
`<=>8x^3:x^2-7x^2:x^2=3x+\sqrt{\frac{9}{25}}`
`<=>8x-7=3x+\sqrt{\frac{9}{25}}`
`<=>8x-7=3x+3/5`
`<=>8x=3x+\frac{38}{5}`
`<=>8x-3x=3x+\frac{38}{5}-3x`
`<=>5x=\frac{38}{5}`
`<=>x=\frac{38}{25}`
a)\(\left(4-x\right)^2-16=0\)
\(\Leftrightarrow\left(4-x\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=4\\4-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}}\)
b) \(25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(3-x\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
c)\(3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow\left(3x+6\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)
#H
1.(4-x)2-16 =0
<=> 16 -8x+x2 -16 =0
<=> -x(8-x) =0
<=> TH1: x=0
. TH2: 8-x=0
. => x= -8
2. 25 - (3-x)2 = 0
<=> 25 - (9-6x+x2) = 0
<=> 25 - 9+6x-x2 = 0
<=> -x2+6x+16 = 0
<=> -(x-8)(x+2) = 0 (bước này bạn nhập phương trình trên mtinh là nó sẽ ra nghiệm nhe)
<=> TH1:x-8=0
. x= 8
. TH2:x+2=0
. x=-2
3.(bạn tự làm nhé, giải bth thui)
Trả lời:
\(1,\left(4x-x\right)^2-16=0\)
\(\Leftrightarrow\left(3x\right)^2-16=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{4}{3}\end{cases}}}\)
Vậy x = 4/3; x = - 4/3 là nghiệm của pt.
\(2,25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(5-3+x\right)\left(5+3-x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(8-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+x=0\\8-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
Vậy x = - 2; x = 8 là nghiệm của pt.
\(3,3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow3\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow x^2-4x+2x-8=0\)
\(\Leftrightarrow x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Vậy x = 4; x = - 2 là nghiệm của pt.
a) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-\left(x^2+3x\right)=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-3;2\right\}\)
c) \(3x\left(x-5\right)-x^2+25=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow3x\left(x-5\right)-\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x-x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\2x=5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{5}{2}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{5;\frac{5}{2}\right\}\)
a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)
\(\Leftrightarrow2x=-40\)
\(\Rightarrow x=-20\)
b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=-12\)
\(\Rightarrow x=-3\)
c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)
\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)
\(\Leftrightarrow-14x=14\)
\(\Rightarrow x=-1\)
d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)
\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)
\(\Leftrightarrow17x=-34\)
\(\Rightarrow x=-2\)
e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)
\(\Leftrightarrow24x=24\)
\(\Rightarrow x=1\)
1.(x -5)^2 - 25 =0
=> (x - 5)^2 = 25
=> x - 5 = 5 hoặc x - 5 = -5
=> x = 10 hoặc x = 0
vậy_
2. (x -2)^3 =27
=> x - 2 = 3
=> x = 5
vậy_
3. 3(x -7) + 2x(x+2) = 2x^2
=> 3x - 21 + 2x^2 + 4x = 2x^2
=> 7x - 21 = 0
=> 7x = 21
=> x = 3
vậy_
4. (x^2 - 4) (x +8) =0
=> x^2 - 4 = 0 hoặc x + 8 = 0
=> x^2 = 4 hoặc x = -8
=> x = 2 hoặc x = -2 hoặc x = -8
vậy_
5. x^ 2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
6. 3x^3 - 3x = 0
=> 3x(x^2 - 1) = 0
=> 3x(x - 1)(x + 1) = 0
=> x = 0 hoặc x = 1 hoặc x = -1
vậy_
7. (x +1)^2 = ( 2x +3)^2
=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0
=> (3x + 3)(-x - 2) = 0
=> x = -1 hoặc x = -2
vậy_
Bài làm
1) ( x - 5 )2 - 25 = 0
<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0
<=> x( x - 10 ) =
<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy S = { 0; 10 }
2) \(\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm phương trình.
3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)
\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=\frac{21}{7}=3\)
Vậy x = 3 là nghiệm phương trình
4) \(\left(x^2-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)
Vậy S = { 2; -2; -8 }
5) \(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy S = { 0; -3 }
6) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy S = { +1; 0 }
7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)
Vậy S = { -2; -4/3 }
# Học tốt #
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
b, x = -5/3 hoặc x = 4/3.
c, x = 0 hoặc x = 3, -3.
d, x = 0 hoặc x = 2, -2.
e, x = 1 hoặc x = \(\dfrac{-1}{2}\).
a: \(\Leftrightarrow x^2-40x+400-x^2-4x-3=-7\)
=>-44x+397=-7
=>-44x=-404
hay x=101
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\4-3x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};\dfrac{4}{3}\right\}\)
c: \(\Leftrightarrow x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
d: \(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{0;2;-2\right\}\)
e: =>(2x+1)(1-x)=0
=>x=-1/2 hoặc x=1
,(3x-1) mũ 2=9/16
<=> (3x-1)^2 = ( ±3/4)^2
<=> l3x-1l = 3/4
Hoặc 3x-1 = 3/4
<=> 3x= 3/4 + 1
<=> x = 7/4 : 3
<=> x= 7/1
x2 -25 = 3x - 15
x2 -3x -25 + 15 = 0
x2 -3x -10 = 0
x2 - 5x + 2x - 10 = 0
( x2 - 5x ) + ( 2x - 10 ) = 0
x ( x - 5 ) + 2 ( x- 5 ) = 0
( x + 5 ). ( x + 2 ) = 0
\(\orbr{\begin{cases}x+5=0\\x+2=0\end{cases}}\)
\(\orbr{\begin{cases}x=-5\\x=-2\end{cases}}\)
Trả lời:
x2 - 25 = 3x - 15
<=> ( x - 5 )( x + 5 ) = 3 ( x - 5 )
<=> ( x - 5 )( x + 5 ) - 3 ( x - 5 ) = 0
<=> ( x - 5 )( x + 5 - 3 ) = 0
<=> ( x - 5 )( x + 2 ) = 0
<=> x - 5 = 0 hoặc x + 2 = 0
<=> x = 5 hoặc x = - 2
Vậy x = 5; x = - 2 là nghiệm của pt.