Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
Bài 1:
Đặt biểu thức trên là A
Ta có:\(A=\left(x-2\right)\left(x+1\right)-\left(x+2\right)\left(x-3\right)=x^2-x-2-\left(x^2-x-6\right)\)
\(=x^2-x-2-x^2+x+6=4\)
Vậy biểu thức A không phụ thuộc vào biến x (đpcm)
Bài 2:
a)\(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2-3x-10+x-x^2+2=15\)
\(\Leftrightarrow-2x-8=15\)
\(\Leftrightarrow-2x=23\)\(\Leftrightarrow x=\frac{-23}{2}\)
Vậy...................................................................................
câu b) tương tự câu a) thôi,bạn tự làm đi nhé
\(b;\left(x+1\right)^2=x+1\)
\(\Rightarrow\left(x+1\right)^2-x-1=0\)
\(\Rightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x+1-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)
\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-9\right)+15=0\)
Đặt \(x^2-1=t\)nên \(pt\Leftrightarrow t\left(t-8\right)+15=0\)
\(\Leftrightarrow t^2-8t+15=0\)
\(\Leftrightarrow t^2-3t-5t+15=0\)
\(\Leftrightarrow t\left(t-3\right)-5\left(t-3\right)=0\)
\(\left(t-5\right)\left(t-3\right)=0\Rightarrow\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}\Rightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}}\)
Với \(t=5\) thì \(x^2-1=5\Leftrightarrow x^2=6\Rightarrow\orbr{\begin{cases}x=\sqrt{6}\\x=-\sqrt{6}\end{cases}}\)
Với \(t=3\) thì \(x^2-1=3\Leftrightarrow x^2=4\Rightarrow\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
Vậy \(x\in\left\{-\sqrt{6};-2;2\sqrt{6}\right\}\)
(x-3)x-1)(x+1)(x+3)+15=0
<=>(x^2-9)(x^2-1)=-15
<=>x^4-10x^2-9=-15
<=>-(x^4+6x^2+9+4X^2)=-15